Refine Your Search

Topic

Author

Search Results

Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Journal Article

Mechanistic Model for the Breakup Length in Jet Atomization

2016-03-14
2016-01-9042
In jet atomization, breakup length is the length of the continuous jet segment, before its breakup to discontinuous droplets. Hydrodynamic instability theory, implemented in CFD codes, is often complemented by semi-empirical correlations for breakup length, which may limit parametric investigations. A basic mechanistic approach to the breakup length prediction, based on a simple momentum balance between the injected jet and the aerodynamic drag force due to the surrounding gas, which complements the classic hydrodynamic instability breakup mechanism, is suggested. This model offers a simple complementing mechanistic model. It is shown that obtained results compare well with published experiments, and with the established empirical correlation of Wu and Faeth (1995). A simplified version of the model, taking into account an inviscid hydrodynamic model is shown to maintain plausibility of breakup length predictions in fuel-injection relevant conditions.
Technical Paper

A Personalized Deep Learning Approach for Trajectory Prediction of Connected Vehicles

2020-04-14
2020-01-0759
Forecasting the motion of the leading vehicle is a critical task for connected autonomous vehicles as it provides an efficient way to model the leading-following vehicle behavior and analyze the interactions. In this study, a personalized time-series modeling approach for leading vehicle trajectory prediction considering different driving styles is proposed. The method enables a precise, personalized trajectory prediction for leading vehicles with limited inter-vehicle communication signals, such as vehicle speed, acceleration, space headway, and time headway of the front vehicles. Based on the learning nature of human beings that a human always tries to solve problems based on grouping and similar experience, three different driving styles are first recognized based on an unsupervised clustering with a Gaussian Mixture Model (GMM).
Journal Article

Design of an Advanced Traction Controller for an Electric Vehicle Equipped with Four Direct Driven In-Wheel Motors

2008-04-14
2008-01-0589
The vision for the future automotive chassis is to interconnect the lateral, longitudinal, and vertical dynamics by separately controlling driving, braking, steering, and damping of each individual wheel. A major advantage of all wheel drive electric vehicles with four in-wheel motors is the possibility to control the torque and speed at each wheel independently. This paper proposes a traction controller for such a vehicle. It estimates the road's adhesion potential at each wheel and adjusts each motor voltage, such that the longitudinal slip is kept in an optimal range. For development and validation, a full vehicle model is designed in ADAMS/View software, in co-simulation with motor and control elements, modeled in MATLAB/Simulink.
Journal Article

Parametric Importance Analysis and Design Optimization of a Torque Converter Model Using Sensitivity Information

2012-04-16
2012-01-0808
Torque converters are used as coupling devices in automobile powertrains involving automatic transmissions. Efficient modeling of torque converters capturing various modes of operation is important for powertrain design and simulation, (Hroval and Tobler 1, Ishihara and Emori 2) optimization and control applications. Models of torque converters are available in various commercial simulation packages, Hadi et. al. 3. The information about the effect of model parameters on torque converter performance is valuable for any design operation. In this paper, a symbolic sensitivity analysis of a torque converter model will be presented. Direct differentiation (Serban and Freeman 4) is used to generate the sensitivity equations which results in equations in symbolic form. By solving the sensitivity equations, the effect of a perturbation of the model parameters on the behavior of the system is determined.
Technical Paper

Material Model Selection for Crankshaft Deep Rolling Process Numerical Simulation

2020-04-14
2020-01-1078
Residual stress prediction arising from manufacturing processes provides paramount information for the fatigue performance assessment of components subjected to cyclic loading. The determination of the material model to be applied in the numerical model should be taken carefully. This study focuses on the estimation of residual stresses generated after deep rolling of cast iron crankshafts. The researched literature on the field employs the available commercial material codes without closer consideration on their reverse loading capacities. To mitigate this gap, a single element model was used to compare potential material models with tensile-compression experiments. The best fit model was then applied to a previously developed crankshaft deep rolling numerical model. In order to confront the simulation outcomes, residual stresses were measured in two directions on real crankshaft specimens that passed through the same modeled deep rolling process.
Journal Article

Full-Vehicle Model Development for Prediction of Fuel Consumption

2013-04-08
2013-01-1358
A predictive model of a specific vehicle was modeled in the system-level physical modeling tool, MapleSim, for performance and fuel consumption prediction of a full vehicle powertrain, driving a multi-body chassis model with tire models. The project also includes investigation into overall fuel efficiency and effect on vehicle handling for different drive cycles. The goals of this project were to investigate: 1) the relationships between the forces at tire/road interfaces during various drive cycles and the fuel efficiency of a vehicle, and 2) the interaction between the powertrain and the chassis of the vehicle. To accomplish these goals, a complete vehicle model was created in the lumped-parameter physical modeling tool, MapleSim. A great deal of effort has gone into using real parameters and to assure that some mathematical rigour has been employed in its development.
Technical Paper

Development of a Broad Delta Airframe and Propulsion Concepts for Reducing Aircraft Noise around Airports

2007-09-17
2007-01-3806
This paper describes the impact of noise on the civil aircraft design process. The challenge to design ‘silent’ aircraft is the development of efficient airframe-engine technologies, for which integration is essential to produce an optimum aircraft, otherwise penalties such as higher fuel consumption, and, or noise are a concern. A description of work completed by Cranfield University will cover design methodologies used for a Broad delta airframe concept, with reference to future studies into alternate concepts. Engine cycle designs for ultra-high bypass ratio, constant volume combustor, and recuperated propulsion cycles are described, with a discussion of integration challenges within the airframe.
Technical Paper

Contrail Avoidance Project Summary

2007-09-17
2007-01-3808
As aviation is one of the fastest growing industrial sector world wide, air-traffic emissions are projected to increase their stake in the contribution to global warming. According to recent studies, both CO2 and contrails will be the principal air-traffic pollutants. Since the environmental impact of contrails is potentially larger, their avoidance is becoming discussed in the aeronautical community. Work on this topic has been carried out at Cranfield University in form of a PhD project. A project summary is given in this paper where contrail avoidance strategies and the different aspects of contrail avoidance are highlighted. The first section provides an overview on the formation principles of contrails based on a literature review. Different technologies are given in the second part, and their introduction is discussed in the last section.
Technical Paper

Defining Performance Metrics for Hybrid Electric Vehicles

2007-04-16
2007-01-0287
The quantitative assessment and comparison of different hybrid vehicle options has traditionally been done on the basis of measuring or estimating the vehicle's fuel economy over predefined drive-cycles. In general, little or no consideration has been given to the more subjective and difficult to quantify vehicle requirements, such as trying to understand which derivative will be the most “fun” vehicle to drive. A lack of understanding in this area of vehicle performance sufficiently early within the development life-cycle so as to be in a position to influence the vehicle design, can lead to a compromised powertrain architecture which will ultimately increase the risk of product failure. The work presented within this paper constitutes part of the overall design activities associated with the LIFECar programme. The aim of the LIFECar consortium is to manufacture a lightweight, fuel cell hybrid electric sports vehicle.
Technical Paper

Implementation and Optimization of a Fuel Cell Hybrid Powertrain

2007-04-16
2007-01-1069
A fuel cell hybrid powertrain design is implemented and optimized by the University of Waterloo Alternative Fuels Team for the ChallengeX competition. A comprehensive set of bench-top and in-vehicle validation results are used to generate accurate fuel cell vehicle models for SIL/HIL control strategy testing and tuning. The vehicle is brought to a “99% buy-off” level of production readiness, and a detailed crashworthiness analysis is performed. The vehicle performance is compared to Vehicle Technical Specifications (VTS).
Technical Paper

Monitoring the Effect of RSW Pulsing on AHSS using FEA (SORPAS) Software

2007-04-16
2007-01-1370
In this study, a finite element software application (SORPAS®) is used to simulate the effect of pulsing on the expected weld thermal cycle during resistance spot welding (RSW). The predicted local cooling rates are used in combination with experimental observation to study the effect pulsing has on the microstructure and mechanical properties of Zn-coated DP600 AHSS (1.2mm thick) spot welds. Experimental observation of the weld microstructure was obtained by metallographic procedures and mechanical properties were determined by tensile shear testing. Microstructural changes in the weld metal and heat affect zone (HAZ) were characterized with respect to process parameters.
Technical Paper

Humidity Sensing Based on Ordered Porous Silicon for the Application on Fuel Cell

2008-04-14
2008-01-0687
Porous silicon as gas/chemical sensing material has been widely investigated in recent years. In this paper, the humidity sensing property of n-type porous silicon with ordered structure is studied for the first time. The ordered porous silicon used in this experiment has uniform pore size, pore shape and distribution. Both the membrane and closed bottom samples were studied. The resistance change of the porous silicon was measured. A 22-28% decrease of resistance was observed when relative humidity was changed from 1% to 100%. Both the response time and the recovery time were within 10 minutes, and 90% of the response can be reached in 6 minutes for the PS membrane sample. The possible sensing mechanism and future work are also discussed in this paper.
Technical Paper

A New Air Hybrid Engine Using Throttle Control

2009-04-20
2009-01-1319
In this work, a new air hybrid engine is introduced in which two throttles are used to manage the engine load in three modes of operation i.e. braking, air motor, and conventional mode. The concept includes an air tank to store pressurized air during braking and rather than a fully variable valve timing (VVT) system, two throttles are utilized. Use of throttles can significantly reduce the complexity of air hybrid engines. The valves need three fixed timing schedules for the three modes of operation. To study this concept, for each mode, the results of engine simulations using GT-Power software are used to generate the operating maps. These maps show the maximum braking torque as well as maximum air motor torque in terms of air tank pressure and engine speed. Moreover, the resulting maps indicate the operating conditions under which each mode is more effective. Based on these maps, a power management strategy is developed to achieve improved fuel economy.
Technical Paper

Experimental and Analytical Property Characterization of a Self-Damped Pneumatic Suspension System

2010-10-05
2010-01-1894
This study investigates the fundamental stiffness and damping properties of a self-damped pneumatic suspension system, based on both the experimental and analytical analyses. The pneumatic suspension system consists of a pneumatic cylinder and an accumulator that are connected by an orifice, where damping is realized by the gas flow resistance through the orifice. The nonlinear suspension system model is derived and also linearized for facilitating the properties characterization. An experimental setup is also developed for validating both the formulated nonlinear and linearized models. The comparisons between the measured data and simulation results demonstrate the validity of the models under the operating conditions considered. Two suspension property measures, namely equivalent stiffness coefficient and loss factor, are further formulated.
Technical Paper

Potential for Fuel Economy Improvements by Reducing Frictional Losses in a Pushing Metal V-Belt CVT

2004-03-08
2004-01-0481
This paper gives an overview of the development of a number of loss models for the pushing metal V-belt CVT. These were validated using a range of experimental data collected from two test rigs. There are several contributions to the torque losses and new models have been developed that are based upon relative motion between belt components and pulley deflections. Belt slip models will be proposed based upon published theory, expanded to take account of new findings from this work. The paper introduces a number of proposals to improve the efficiency of the transmission based on redesign of the belt geometry and other techniques to reduce frictional losses between components. These proposed efficiency improvements have been modelled and substituted into a complete vehicle simulation to show improvements in vehicle fuel economy over a standard European drive cycle.
Technical Paper

Advance Noise Path Analysis, A Robust Engine Mount Optimization Tool

2003-10-27
2003-01-3117
Many design problems are discovered often late in the development process, when design flexibility is limited. It is the art of the refinement engineers to find a solution to any unpredicted issues at this stage. The refinement process contains many hours of testing and requires many prototypes. Having an accurate experimental model of the system in this phase could reduce refinement time significantly. One of the areas that usually require refinement and tuning late in the design process is engine and body mounting systems. In this paper, we introduce a technique to optimize the mounting system of a vehicle for a given objective function using experimental/numerical analysis. To obtain an accurate model of the vehicle, we introduce an experimental procedure based upon the substructuring method. The method eliminates the need for any accurate finite element method of the vehicle. Experimental results of the implementation of this approach to a real vehicle are presented.
Technical Paper

On the Use of Reference Models in Automotive Aerodynamics

2004-03-08
2004-01-1308
In automotive aerodynamics much use has been made of generic reference models for research and correlation. Research work has been conducted mostly on small-scale versions of the models to investigate flow regimes and aerodynamic force and moment characteristics while correlation tests have made use of full-scale models to compare results between wind tunnels. More recently reference geometries have also been used as test cases in the validation of computational techniques. This paper reviews the design characteristics and use of several key reference models. The advantages and disadvantages of these designs and also the applicability of the results in providing guidelines for the development of production vehicles are discussed. It is advocated that when researchers choose to use simple models, existing reference geometries should be employed.
Technical Paper

Dent Resistance of Medium Scale Aluminum Structural Assemblies

2001-03-05
2001-01-0757
This work outlines the evaluation of static and dynamic dent resistance of medium scale structural assemblies fabricated using AA6111 and AA5754. The assemblies fabricated attempt to mimic common automotive hood designs allowing for a parametric study of the support spacing, sheet thickness and panel curvature. Closure panels of AA6111, of two thicknesses (0.8, and 0.9mm), are bonded to re-usable inner panels fabricated using AA5754 to form the structural assemblies tested. While normal practice would use the same alloy for both the inner and the outer, in the current work, AA5754 was adopted for ease of welding. Numerical simulations were performed using LS DYNA. A comparison of experimental and numerically simulated results is presented. The study attempts to establish an understanding of the relationship between structural support conditions and resulting dent depths for both static and dynamic loading conditions.
Technical Paper

The Effect of Nitrogen on the Mechanical Properties of an SAE 1045 Steel

1992-02-01
920667
A cold worked and induction hardened SAE1045 steel component exhibited excessive distortion after cold working and straightening, as well as cracking during straightening after induction hardening. Since the problems occurred only in certain heats of electric furnace (EF) steel, in which nitrogen content can vary widely and in some cases be quite high, and never occurred for basic oxygen furnace (BOF) steel for which nitrogen contents are uniformly low it was suspected that the source of the problem was low temperature nitrogen strain aging in heats of EF steel with a high nitrogen content. The measured distortion and mechanical properties at various stages in the fabrication process showed that while nitrogen content had no significant effect on the hot rolled steel the component distortion and strength after cold working and after induction hardening increased with increasing nitrogen content.
X