Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Characterization of a New Advanced Diesel Oxidation Catalyst with Low Temperature NOx Storage Capability for LD Diesel

2012-06-18
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Journal Article

The Effects of Neat Biodiesel Usage on Performance and Exhaust Emissions from a Small Displacement Passenger Car Diesel Engine

2010-05-05
2010-01-1515
The effects of using neat FAME (Fatty Acid Methyl Ester) in a modern small displacement passenger car diesel engine have been evaluated in this paper. In particular the effects on engine performance at full load with standard (i.e., without any special tuning) ECU calibration were analyzed, highlighting some issues in the low end torque due to the lower exhaust gas temperatures at the turbine inlet, which caused a remarkable decrease of the available boost, with a substantial decrease of the engine torque output, far beyond the expected engine derating due to the lower LHV of the fuel. However, further tests carried out after ECU recalibration, showed that the same torque levels measured under diesel operation can be obtained with neat biodiesel too, thus highlighting the potential for maintaining the same level of performance.
Journal Article

Particle Number and Size Distribution from a Small Displacement Automotive Diesel Engine during DPF Regeneration

2010-05-05
2010-01-1552
The aim of this work is to analyze particle number and size distribution from a small displacement Euro 5 common rail automotive diesel engine, equipped with a close coupled aftertreatment system, featuring a DOC and a DPF integrated in a single canning. In particular the effects of different combustion processes on PM characteristics were investigated, by comparing measurements made both under normal operating condition and under DPF regeneration mode. Exhaust gas was sampled at engine outlet, at DOC outlet and at DPF outlet, in order to fully characterize PM emissions through the whole exhaust line. After a two stage dilution system, sampled gas was analyzed by means of a TSI 3080 SMPS, in the range from 6 to 240 nm. Particle number and size distribution were evaluated at part load operating conditions, representative of urban driving.
Technical Paper

An Engine Parameters Sensitivity Analysis on Ducted Fuel Injection in Constant-Volume Vessel Using Numerical Modeling

2021-09-05
2021-24-0015
The use of Ducted Fuel Injection (DFI) for attenuating soot formation throughout mixing-controlled diesel combustion has been demonstrated impressively effective both experimentally and numerically. However, the last research studies have highlighted the need for tailored engine calibration and duct geometry optimization for the full exploitation of the technology potential. Nevertheless, the research gap on the response of DFI combustion to the main engine operating parameters has still to be fully covered. Previous research analysis has been focused on numerical soot-targeted duct geometry optimization in constant-volume vessel conditions. Starting from the optimized duct design, the herein study aims to analyze the influence of several engine operating parameters (i.e. rail pressure, air density, oxygen concentration) on DFI combustion, having free spray results as a reference.
Technical Paper

Potentials of the Oversizing and H2-Supported Lean Combustion of a VVA SI Gasoline Engine Towards Efficiency Improvement

2021-09-05
2021-24-0007
In recent years, internal combustion engine (ICE) downsizing coupled with turbocharging was considered the most effective path to improve engine efficiency at low load, without penalizing rated power/torque performance at full load. On the other side, issues related to knocking combustion and excessive exhaust gas temperatures obliged adopting countermeasures that highly affect the efficiency, such as fuel enrichment and delayed combustion. Powertrain electrification allows operating the ICE mostly at medium/high loads, shifting design needs and constraints towards targeting high efficiency under those operating conditions. Conversely, engine efficiency at low loads becomes a less important issue. In this track, the aim of this work is the investigation of the potential of the oversizing of a small Variable Valve ActuationSpark Ignition gasoline engine towards efficiency increase and tailpipe emission reduction.
Technical Paper

A Theoretical and Experimental Analysis of the Coulomb Counting Method and of the Estimation of the Electrified-Vehicles Electricity Balance in the WLTP

2020-06-30
2020-37-0020
The battery of a vehicle with an electrified powertrain (Hybrid Electric Vehicle or Battery Electric Vehicle), is required to operate with highly dynamic power outputs, both for charging and discharging operation. Consequently, the battery current varies within an extensive range during operation and the battery temperature also changes. In some cases, the relationship between the current flow and the change in the electrical energy stored seems to be affected by inefficiencies, in literature described as current losses, and nonlinearities, typically associated with the complex chemical and physical processes taking place in the battery. When calculating the vehicle electrical energy consumption over a trip, the change in the electrical energy stored at vehicle-level has to be taken into account. This quantity, what we could call the vehicle electricity balance, is typically obtained through a time-based integration of the battery current of all the vehicle batteries during operation.
Journal Article

Critical Aspects on the Use of Thermal Wall Functions in CFD In-Cylinder Simulations of Spark-Ignition Engines

2017-03-28
2017-01-0569
CFD and FE tools are intensively adopted by engine manufacturers in order to prevent thermo-mechanical failures reducing time- and cost-to market. The capability to predict correctly the physical factors leading to damages is hence essential for their application in the industrial practice. This is even more important for last generation SI engines, where the more and more stringent need to lower fuel consumption and pollutant emissions is pushing designers to reduce engine displacement in favor of higher specific power, usually obtained by means of turbocharging. This brings to a new generation of SI engines characterized by higher and higher adiabatic efficiency and thermo-mechanical loads. A recent research highlighted the different behavior of the thermal boundary layer of such engines operated at high revving speeds and high loads if compared to the same engines operated at low loads and revving speeds or even engines with a lower specific power.
Journal Article

Development of a RANS-Based Knock Model to Infer the Knock Probability in a Research Spark-Ignition Engine

2017-03-28
2017-01-0551
Engine knock is one of the most limiting factors for modern Spark-Ignition (SI) engines to achieve high efficiency targets. The stochastic nature of knock in SI units hinders the predictive capability of RANS knock models, which are based on ensemble averaged quantities. To this aim, a knock model grounded in statistics was recently developed in the RANS formalism. The model is able to infer a presumed log-normal distribution of knocking cycles from a single RANS simulation by means of transport equations for variances and turbulence-derived probability density functions (PDFs) for physical quantities. As a main advantage, the model is able to estimate the earliest knock severity experienced when moving the operating condition into the knocking regime.
Journal Article

Development of a K-k-∊ Phenomenological Model to Predict In-Cylinder Turbulence

2017-03-28
2017-01-0542
The turbulent flow field inside the cylinder plays a major role in spark ignition (SI) engines. Multiple phenomena that occur during the high pressure part of the engine cycle, such as early flame kernel development, flame propagation and gas-to-wall heat transfer, are influenced by in-cylinder turbulence. Turbulence inside the cylinder is primarily generated via high shear flows that occur during the intake process, via high velocity injection sprays and by the destruction of macro-scale motions produced by tumbling and/or swirling structures close to top dead center (TDC) . Understanding such complex flow phenomena typically requires detailed 3D-CFD simulations. Such calculations are computationally very expensive and are typically carried out for a limited number of operating conditions. On the other hand, quasi-dimensional simulations, which provide a limited description of the in-cylinder processes, are computationally inexpensive.
Journal Article

Development of a Phenomenological Turbulence Model through a Hierarchical 1D/3D Approach Applied to a VVA Turbocharged Engine

2016-04-05
2016-01-0545
It is widely recognized that spatial and temporal evolution of both macro- and micro- turbulent scales inside internal combustion engines affect air-fuel mixing, combustion and pollutants formation. Particularly, in spark ignition engines, tumbling macro-structure induces the generation of a proper turbulence level to sustain the development and propagation of the flame front. As known, 3D-CFD codes are able to describe the evolution of the in-cylinder flow and turbulence fields with good accuracy, although a high computational effort is required. For this reason, only a limited set of operating conditions is usually investigated. On the other hand, thanks to a lower computational burden, 1D codes can be employed to study engine performance in the whole operating domain, despite of a less detailed description of in-cylinder processes. The integration of 1D and 3D approaches appears hence a promising path to combine the advantages of both.
Journal Article

Numerical and Experimental Assessment of a Solenoid Common-Rail Injector Operation with Advanced Injection Strategies

2016-04-05
2016-01-0563
The selection and tuning of the Fuel Injection System (FIS) are among the most critical tasks for the automotive diesel engine design engineers. In fact, the injection strongly affects the combustion phenomena through which controlling a wide range of related issues such as pollutant emissions, combustion noise and fuel efficiency becomes feasible. In the scope of the engine design optimization, the simulation is an efficient tool in order to both predict the key performance parameters of the FIS, and to reduce the amount of experiments needed to reach the final product configuration. In this work a complete characterization of a solenoid ballistic injector for a Light-Duty Common Rail system was therefore implemented in a commercially available one-dimensional computational software called GT-SUITE. The main phenomena governing the injector operation were simulated by means of three sub-models (electro-magnetic, hydraulic and mechanical).
Journal Article

Integrated In-Cylinder / CHT Methodology for the Simulation of the Engine Thermal Field: An Application to High Performance Turbocharged DISI Engines

2016-04-05
2016-01-0578
New SI engine generations are characterized by a simultaneous reduction of the engine displacement and an increase of the brake power; such targets are achieved through the adoption of several techniques such as turbocharging, direct fuel injection, variable valve timing and variable port lengths. This design approach, called “downsizing”, leads to a marked increase in the thermal loads acting on the engine components, in particular on those facing the combustion chamber. Hence, an accurate evaluation of the thermal field is of primary importance in order to avoid mechanical failures. Moreover, the correct evaluation of the temperature distribution improves the prediction of pointwise abnormal combustion onset.
Journal Article

Numerical Investigation on the Effects of Different Thermal Insulation Strategies for a Passenger Car Diesel Engine

2017-09-04
2017-24-0021
One of the key technologies for the improvement of the diesel engine thermal efficiency is the reduction of the engine heat transfer through the thermal insulation of the combustion chamber. This paper presents a numerical investigation on the effects of the combustion chamber insulation on the heat transfer, thermal efficiency and exhaust temperatures of a 1.6 l passenger car, turbo-charged diesel engine. First, the complete insulation of the engine components, like pistons, liner, firedeck and valves, has been simulated. This analysis has showed that the piston is the component with the greatest potential for the in-cylinder heat transfer reduction and for Brake Specific Fuel Consumption (BSFC) reduction, followed by firedeck, liner and valves. Afterwards, the study has been focused on the impact of different piston Thermal Barrier Coatings (TBCs) on heat transfer, performance and wall temperatures.
Journal Article

Experimental and Numerical Assessment of Multi-Event Injection Strategies in a Solenoid Common-Rail Injector

2017-09-04
2017-24-0012
Nowadays, injection rate shaping and multi-pilot events can help to improve fuel efficiency, combustion noise and pollutant emissions in diesel engine, providing high flexibility in the shape of the injection that allows combustion process control. Different strategies can be used in order to obtain the required flexibility in the rate, such as very close pilot injections with almost zero Dwell Time or boot shaped injections with optional pilot injections. Modern Common-Rail Fuel Injection Systems (FIS) should be able to provide these innovative patterns to control the combustion phases intensity for optimal tradeoff between fuel consumption and emission levels.
Technical Paper

Real Time Energy Management Control Strategies for an Electrically Supercharged Gasoline Hybrid Vehicle

2020-04-14
2020-01-1009
The high level of electric power available on a Hybrid Electric Vehicle (HEV) enables the introduction of electrical auxiliaries in addition or in substitution to the ones currently available on a conventional powertrain. Among these auxiliaries, electric Superchargers (eSC) for the improvement of the vehicle performance or electrically heated catalysts for the reduction of the light-off time of the after-treatment may dramatically affect the Energy Management System (EMS) of an HEV. Moreover, since these devices are only fluid-dynamically, but not mechanically, linked to the powertrain, they are traditionally neglected in the optimization of the powersplit between internal combustion engine and electric machines by the EMS. The aim of the current work is the development of an EMS that is able to consider in real time the overall electric energy consumption of the entire powertrain.
Journal Article

Computational Analysis of Internal and External EGR Strategies Combined with Miller Cycle Concept for a Two Stage Turbocharged Medium Speed Marine Diesel Engine

2011-04-12
2011-01-1142
In this work different internal and external EGR strategies, combined with extreme Miller cycles, were analyzed by means of a one-dimensional CFD simulation code for a Wärtsilä 6-cylinder, 4-strokes, medium-speed marine diesel engine, to evaluate their potential in order to reach the IMO Tier 3 NOx emissions target. By means of extreme Miller cycles, with Early Intake Valve Closures (up to 100 crank angle degrees before BDC), a shorter compression stroke and lower charge temperatures inside the cylinder can be achieved and thanks to the cooler combustion process, the NOx-specific emissions can be effectively reduced. EIVC strategies can also be combined with reductions of the scavenging period (valve overlap) to increase the amount of exhaust gases in the combustion chamber. However, the remarkably high boost pressure levels needed for such extreme Miller cycles, require mandatorily the use of two-stage turbocharging systems.
Journal Article

Analysis of Performance and Emissions of an Automotive Euro 5 Diesel Engine Fuelled with B30 from RME and JME

2011-04-12
2011-01-0328
The effects of using a B30 blend of ultra-low sulfur diesel and two different Fatty Acid Methyl Esters (FAME) obtained from both Rapeseed Methyl Ester (RME) and Jatropha Methyl Ester (JME) in a Euro 5 small displacement passenger car diesel engine on both full load performance and part load emissions have been evaluated in this paper. In particular the effects on engine torque were firstly analyzed, for both a standard ECU calibration (i.e., without any special tuning for the different fuel characteristics) and for a specifically adjusted ECU calibration obtained by properly increasing the injected fuel quantities to compensate for the lower LHV of the B30: with the latter, the same torque levels measured under diesel operation could be observed with the B30 blend too, with lower smoke levels, thus highlighting the potential for maintaining the same level of performance while achieving substantial emissions benefits.
Journal Article

Cfd Diagnostic Methodology for the Assessment of Mixture Formation Quality in GDI Engines

2011-09-11
2011-24-0151
The fuel injection plays a crucial role in determining the mixture formation process in Gasoline Direct Injection (GDI) engines. Pollutant emissions, and soot emissions in particular, as well as phenomena affecting engine reliability, such as oil dilution and injector coking, are deeply influenced by the injection system features, such as injector geometric characteristics (such as injector type, injector position and targeting within the combustion chamber) and operating characteristics (such as injection pressure, injection phasing, etc.). In this paper, a new CFD methodology is presented, allowing a preliminary assessment of the mixture formation quality in terms of expected soot emissions, oil dilution and injector coking risks for different injection systems (such as for instance multihole or swirl injectors) and different injection strategies, from the early stages of a new engine design.
Journal Article

Analysis of Diesel Spray Momentum Flux Spatial Distribution

2011-04-12
2011-01-0682
In the present paper the results of an experimental and numerical analysis of a common-rail, high pressure Diesel spray evolving in high counter pressure conditions is reported. The experimental study was carried out mainly in terms of spray momentum flux indirect measurement by the spray impact method; the measurement of the impact force time-histories, along with the CFD analysis of the same phenomenon, gave interesting insight in the internal spray structure. As well known, the overall spray structure momentum flux along with the injection rate measurements can be used to derive significant details about the in-nozzle flow and cavitation phenomena intensity. The same global spray momentum and momentum flux measurement can be useful in determining the jet-to-jet un-uniformities also in transient, engine-typical injection conditions which can assist in the matching process between the injection system and the combustion chamber design.
Journal Article

Analysis of the Performance of a Turbocharged S.I. Engine under Transient Operating Conditions by Means of Fast Running Models

2013-04-08
2013-01-1115
The aim of this work is the assessment of the predictive capabilities of fast running models, obtained through an appropriate reduction and simplification process from detailed 1D fluid-dynamic models, for a turbocharged s.i. engine under highly transient operating conditions. Simulations results have been compared with experimental data for different types of models, ranging from fully detailed 1D fluid-dynamic models to map-based models, quantifying the degradation of the model accuracy and the reduction in the computational time for different kinds of driving cycles, from moderately transient such as the NEDC to highly dynamic such as the US06.
X