Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

The Relationships of Diesel Fuel Properties, Chemistry, and HCCI Engine Performance as Determined by Principal Components Analysis

2007-10-29
2007-01-4059
In order to meet common fuel specifications such as cetane number and volatility, a refinery must blend a number of refinery stocks derived from various process units in the refinery. Fuel chemistry can be significantly altered in meeting fuel specifications. Additionally, fuel specifications are seldom changed in isolation, and the drive to meet one specification may alter other specifications. Homogeneous charge compression ignition (HCCI) engines depend on the kinetic behavior of a fuel to achieve reliable ignition and are expected to be more dependent on fuel specifications and chemistry than today's conventional engines. Regression analysis can help in determining the underlying relationships between fuel specifications, chemistry, and engine performance. Principal Component Analysis (PCA) is used as an adjunct to regression analysis in this work, because of its ability to deal with co-linear variables and potential to uncover ‘hidden’ relationships between the variables.
Technical Paper

Effects of Variations in Market Gasoline Properties on HCCI Load Limits

2007-07-23
2007-01-1859
The impact of market-fuel variations on the HCCI operating range was measured in a 2.3L four-cylinder engine, modified for single-cylinder operation. HCCI combustion was achieved through the use of residual trapping. Variable cam phasing was used to maximize the load range at each speed. Test fuels were blended to cover the range of variation in select commercial fuel properties. Within experimental measurement error, there was no change in the low-load limit among the test fuels. At the high-load limit, some small fuel effects on the operating range were observed; however, the observed trends were not consistent across all the speeds studied.
Technical Paper

Performance of Biodiesel Blends of Different FAME Distributions in HCCI Combustion

2009-04-20
2009-01-1342
As the world market develops for biodiesel fuels, it is likely that a wider variety of biodiesels will become available, both locally and globally, and require engines to operate on a wider variety of fuels than experienced today. At the same time, tighter emissions regulations and a drive for improved fuel economy have focused interest on advanced combustion modes such as HCCI or PCCI, which are known to be more sensitive to fuel properties. This research covers two series of biodiesel fuels. In the first, B20 blends of natural methyl esters derived from palm, coconut, rape, soy, and mustard were evaluated at light load in an HCCI research engine to determine combustion and performance characteristics. These fuels showed performance differences between the biodiesels and the base #2 ULSD fuel, but did not allow separation of chemical effects due to the small number of fuels and correlation of various properties.
Technical Paper

Application of a First Law Heat Balance Method to a Turbocharged Automotive Diesel Engine

2009-11-02
2009-01-2744
The First Law of Thermodynamics has been applied to the analysis of the dynamometer performance of a 2.0 litre,115 PS, common rail, turbocharged, automotive diesel engine operating under steady state conditions. Validation of the method is presented with correlation between the input fuel power and summed loss terms shown to be better than 3%. The study was conducted over a matrix of engine speed-load sites and maps of the underlying trends and magnitudes are presented. Detailed analysis of the relative heat balance contributions at a range of loads at fixed engine, water pump, and oil pump speeds is also presented. The proportions of heat rejected to the different primary paths (i.e. brake, coolant, oil, charge cooler, exhaust, and external) were found to vary with engine speed and load. Also, friction power was found to vary principally as a function of engine speed with some small dependency on engine load.
Technical Paper

Emission Reductions and Operational Experiences With Heavy Duty Diesel Fleet Vehicles Retrofitted with Continuously Regenerated Diesel Particulate Filters in Southern California

2001-03-05
2001-01-0512
Particulate emission control from diesel engines is one of the major concerns in the urban areas in California. Recently, regulations have been proposed for stringent PM emission requirements from both existing and new diesel engines. As a result, particulate emission control from urban diesel engines using advanced particulate filter technology is being evaluated at several locations in California. Although ceramic based particle filters are well known for high PM reductions, the lack of effective and durable regeneration system has limited their applications. The continuously regenerated diesel particulate filter (CRDPF) technology discussed in this presentation, solves this problem by catalytically oxidizing NO present in the diesel exhaust to NO2 which is utilized to continuously combust the engine soot under the typical diesel engine operating condition.
Technical Paper

An Investigation Into the Effect of a Diesel/Water Emulsion on the Size and Number Distribution of the Particulate Emissions from a Heavy-Duty Diesel Engine

2003-10-27
2003-01-3168
The current test programmes have measured emissions from a heavy-duty bus engine installed on a test bench and also on a chassis dynamometer whilst running on a Diesel/water emulsion fuel. Testing was carried out over both steady state and transient test cycles. Emissions were also measured on the test bed from the engine fitted with both a Diesel particulate filter and an oxidation catalyst. Alongside the measurement of the regulated emissions, particle number distributions (by size) and total particle counts were also measured. Size selected particle counts were made over the transient tests and are compared between engine test and chassis dynamometer. This paper demonstrates the influence of the emulsion on the particle size distribution, the effects of after-treatment and lubricant on the particle size emissions of an engine running on an emulsion and also the influence of sampling conditions on the measurements recorded.
Technical Paper

The Effect of Sulphur-Free Diesel Fuel on the Measurement of the Number and Size Distribution of Particles Emitted from a Heavy-Duty Diesel Engine Equipped with a Catalysed Particulate Filter

2003-10-27
2003-01-3167
Following concern about the association between adverse health effects and ambient particulate concentrations, there are now an increasing number of heavy-duty Diesel engines fitted with catalysed particulate filters. These filters virtually eliminate carbon particle emissions but there is some evidence suggesting a potential to form a cloud of secondary nucleation particles post trap. This event occurs at high temperature operating conditions and is produced mainly from the increased sulphate production over the catalyst. This paper investigates the measurement of particle emissions from a heavy-duty engine operating over the European legislated cycle, both with and without a filter fitted and investigates how emissions are affected by the use of a sulphur-free Diesel fuel. The work also demonstrates a contribution to the measured nucleation particles from material desorbed not only from the trap, but also from the exhaust system.
Technical Paper

The Emissions Performance of Oxygenated Diesel Fuels in a Prototype DI Diesel Engine

2001-03-05
2001-01-0650
As part of a cooperative development program, six diesel fuels (a reference and five blends containing oxygenates) were evaluated under four steady-state conditions using a prototype 1.26-L 3-cylinder four-valve common-rail DI diesel engine. All of the fuels contained low sulfur (mostly < 5 ppm by mass), and they were chosen to determine the impacts of oxygenate volatility, concentration, and chemical type (paraffinic or aromatic) on exhaust emissions - with particular emphasis on particulate emissions. In addition to HC, CO, NOx and PM emissions measurements, emissions of the volatile portion of the PM and particle size were determined. Relative to the very low sulfur reference fuel, the oxygenated fuels reduced PM and NOx under some operating conditions, but produced little effect on either HC or CO emissions. Aliphatic oxygenates at 6 wt. percent oxygen in the reference fuel reduced simulated FTP PM emissions by 15 - 27 %.
Technical Paper

Chemical Speciation of Exhaust Emissions from Trucks and Buses Fueled on Ultra-Low Sulfur Diesel and CNG

2002-03-04
2002-01-0432
A recently completed program was developed to evaluate ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different truck and bus fleets operating in Southern California. The primary test fuels, ECD and ECD-1, are produced by ARCO, a BP company, and have less than 15 ppm sulfur content. A test fleet comprised of heavy-duty trucks and buses were retrofitted with one of two types of catalyzed diesel particle filters, and operated for one year. As part of this program, a chemical characterization study was performed in the spring of 2001 to compare the exhaust emissions using the test fuels with and without aftertreatment. A detailed speciation of volatile organic hydrocarbons (VOC), polycyclic aromatic hydrocarbons (PAH), nitro-PAH, carbonyls, polychlorodibenzo-p-dioxins (PCDD) and polychlorodibenzo-p-furans (PCDF), inorganic ions, elements, PM10, and PM2.5 in diesel exhaust was performed for a select set of vehicles.
Technical Paper

Speciation of Organic Compounds from the Exhaust of Trucks and Buses: Effect of Fuel and After-Treatment on Vehicle Emission Profiles

2002-10-21
2002-01-2873
A study was performed in the spring of 2001 to chemically characterize exhaust emissions from trucks and buses fueled by various test fuels and operated with and without diesel particle filters. This study was part of a multi-year technology validation program designed to evaluate the emissions impact of ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different heavy-duty vehicle fleets operating in Southern California. The overall study of exhaust chemical composition included organic compounds, inorganic ions, individual elements, and particulate matter in various size-cuts. Detailed descriptions of the overall technology validation program and chemical speciation methodology have been provided in previous SAE publications (2002-01-0432 and 2002-01-0433).
Technical Paper

Co-Engineering Durable, Fuel Efficient Engine Oils for Diesel Passenger Cars

2013-01-09
2013-26-0004
Rising fuel prices and global concern over climate change have resulted in the need to deliver vehicles with improved fuel efficiency. The aim is to achieve this without compromising vehicle performance, durability or cost. Passenger car manufacturers worldwide are looking at various ways to optimize fuel economy performance. One option is for a vehicle OEM to re-design engine componentry in an effort to reduce engine friction and thereby reduce tailpipe emissions. There is also an increased focus on the crankcase lubricant as a potential tool to improve engine efficiency. This has led to a close collaborative working model between equipment manufacturers and engine oil marketers to create state of the art fluids capable of delivering higher fuel economy benefits without compromising engine durability. This paper describes a structured approach to the design of an advanced engine oil for a diesel passenger car.
Technical Paper

Fuel and Lubricant Effects on Nucleation Mode Particle Emissions From a Euro III Light Duty Diesel Vehicle

2004-06-08
2004-01-1989
The impact of lubricant sulphur and phosphorus levels on the formation of nucleation mode particles was explored in a light duty diesel vehicle operating over the New European Drive Cycle (NEDC). All measurements were undertaken using a Scanning Mobility Particle Sizer (SMPS), sampling from a conventional Constant Volume Sampler (CVS) system. Rigorous sampling system and vehicle conditioning procedures were applied to eliminate oil carry-over and nanoparticle artifact formation. An initial vehicle selection process was undertaken on vehicles representing three fuel injection strategies, namely; distributor pump, common rail and unit injector. The vehicles met Euro III specifications and were all equipped with oxidation catalysts. Idle and low load stability were key requirements, since these conditions are the most significant in terms of their propensity to generate nucleation mode particles.
Technical Paper

The Exhaust Emissions of Prototype Ultra-Low Sulfur and Oxygenated Diesel Fuels

2005-10-24
2005-01-3880
A 1.3-L direct injection diesel engine was used in steady-state testing to determine the emissions performance of a matrix of ultra-low sulfur diesel fuels encompassing two types of sulfur removal and the use of fuel oxygenates. As expected, exhaust gas recirculation was the most effective technique for NOx reduction. With regard to fuel effects, an oxygenated diesel fuel produced with a conventional sulfur removal process reduced particulate emissions substantially, and these particulate reductions could be converted into NOx reductions by using higher levels of exhaust gas recirculation. On a simulated FTP, this oxygenated fuel simultaneously decreased NOx emissions by 30% and total particulate emissions by 50% compared to a baseline fuel.
Technical Paper

Emissions of Toxicologically Relevant Compounds Using Dibutyl Maleate and Tripropylene Glycol Monomethyl Ether Diesel Fuel Additives to Lower NOx Emissions

2005-04-11
2005-01-0475
A previous paper reported (SAE Paper 2002-01-2884) that it was possible to decrease mode-weighted NOx emissions compared to the OEM calibration with corresponding increases in particulate matter (PM) emissions. These PM emission increases were partially overcome with the use of oxygenated diesel fuel additives. We wanted to know if compounds of toxicological concern were emitted more or less using oxygenated diesel fuel additives that were used in conjunction with a modified engine operating strategy to lower engine-out NOx emissions. Emissions of toxicologically relevant compounds from fuels containing triproplyene glycol monomethyl ether and dibutyl maleate were the same or lower compared to a low sulfur fuel (15 ppm sulfur) even under engine operating conditions designed to lower engine-out NOx emissions.
Technical Paper

Long-Term Durability of Passive Diesel Particulate Filters on Heavy-Duty Vehicles

2004-03-08
2004-01-0079
A multi-year technology validation program was completed in 2001 to evaluate ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different diesel fleets operating in Southern California. The fuels used throughout the validation program were diesel fuels with less than 15-ppm sulfur content. Trucks and buses were retrofitted with two types of passive DPFs. Two rounds of emissions testing were performed to determine if there was any degradation in the emissions reduction. The results demonstrated robust emissions performance for each of the DPF technologies over a one-year period. Detailed descriptions of the overall program and results have been described in previous SAE publications [2, 3, 4, 5]. In 2002, a third round of emission testing was performed by NREL on a small subset of vehicles in the Ralphs Grocery Truck fleet that demonstrated continued robust emissions performance after two years of operation and over 220,000 miles.
X