Refine Your Search

Topic

Search Results

Technical Paper

Real-Time Measurement of Camshaft Wear in an Automotive Engine - a Radiometric Method

1990-10-01
902085
A radiometric method has been developed for the determination of camshaft wear during engine operation. After a radioactive tracer is induced at the tips of one or more cam lobes by the technique of surface layer activation, calibration procedure are performed to determine the amount of radioactive material remaining versus the depth worn. The decrease in γ-ray intensity measured external to the engine is then directly related to cam lobe wear. By incorporating a high-resolution detector and an internal radioactive standard,measurement accuracy better than ±0.2 μm at 95% confidence has been achieved. Without the requirement of engine disassembly, this method has provided unique measurements of break-in wear and wear as a function of operating conditions. Because this approach requires only low levels of radiation, it has significant potential applications in wear control.
Technical Paper

Tolerance and Properties of Superficial Soft Tissues In Situ

1970-02-01
700910
Utilizing unembalmed cadaver test subjects, a series of tests was carried out to characterize quantitatively the resistance of the skin, the soft underlying tissue of the scalp, and certain other typical areas of the body to impact loading. The impacts were delivered by the use of an instrumented free-fall device similar to that previously employed for facial bone fracture experiments. In one group of tests, metal and glass edges were affixed to the impacting device to produce localized trauma under conditions which were standardized with respect to variables affecting the degree of the injury. In the second group of experiments, specimens of skin, together with underlying tissue of uniform thickness, were subjected to compressive impact between the parallel surfaces of the impacting weight and a heavy metal platen. From these latter experiments the force-time histories, coefficient of restitution, and hysteresis loops of load versus deflection were obtained for the specimens.
Technical Paper

Correlation of Physical Properties with Performance of Polyacrylate Radial Lip Seals at -30F

1973-02-01
730051
This paper evaluates the tendency of lip seals to fracture in a test apparatus in which dynamic runout is 0.010 in and the temperature is cycled between -30 and 0 F. Seals made of eight different polyacrylate polymers were soap-sulfur cured with various types and amounts of carbon black. Physical tests included room-temperature flexibility defined by Young's modulus at small strains, standard tensile tests at room temperature, flexibility at sub-zero temperatures determined by a Gehman test, and sub-zero starting torques of the seals. Primary determinant of successful fracture resistance is a low starting torque resulting from good low-temperature flexibility. The effect of adding graphite to some of these formulations is described and some current commercially available seals are evaluated.
Technical Paper

Mechanical Simulation of Human Thorax Under Impact

1973-02-01
730982
This paper summarizes an analysis, design, and test project in which a dummy chest structure was developed. The chest consisted of mechanical elements that had been characterized by computer simulations as giving responses to blunt frontal impacts necessary for biofidelity. An analysis of mechanical rib structures indicated that materials having a high ratio of yield stress to modulus of elasticity were required. Only metals having unusually high yield strengths, such as spring steels, qualified. A mechanical system was developed with steel ribs pivoted at each end as a primary spring. A secondary spring was a pair of commercially available die springs acting in parallel with the ribs after 25.4 mm (1.00 in) deflection. A fluid damper was developed to provide the damping. The chest structure was tested under conditions modified from those used by Kroell. The modifications were holding the spine rigidly and reducing the impact masses.
Technical Paper

Thoracic Tolerance to Whole-Body Deceleration

1971-02-01
710852
A professional high diver, instrumented with accelerometers, performed sixteen dives from heights between 27-57 ft. For each dive, he executed a 3/4 turn and landed supine on a 3-ft deep mattress which consisted of pieces of low-density urethane foam encased in a nylon cover. Using FM telemetry, sagittal plane decelerations were recorded for a point either on the sternum or the forehead. Impact velocities and corresponding stopping distances for the thorax and the head were calculated from high-speed movies of the dives. For a 57-ft dive, the impact velocity of the thorax was 41 mph with a corresponding stopping distance of 34.6 in. The peak resultant deceleration of the thorax was 49.2 g with a pulse duration of 100 ms. The maximum rate of change of the deceleration of the thorax was 5900 g/s. No discomfort was experienced as a result of this impact. The maximum forehead deceleration occurred during a 47.0-ft drop and exceeded 56 g with a Gadd Severity Index greater than 465.
Technical Paper

Dynamic Computer Techniques for Vehicle Emission Development

1972-02-01
720211
Development of engine-vehicle prototypes for low emissions and optimum fuel control characteristics has been facilitated through use of a computerized emissions test system. Simultaneous on-line sampling of exhaust species concentrations, fuel consumption, spark advance, pressures, and temperatures provides both graphical and computed outputs of several vehicle parameters that are important to development programs. On-line display of vehicle air-fuel ratio is continuously supplied. Either of two federal driving cycles (or any random driving schedule) may be employed. Dynamic calibration, range sensing, and zero-drift correction keep operator interaction and errors to a minimum. Capability for reprocessing, plotting, and/or patching stored data provides increased computational flexibility.
Technical Paper

Some Factors Affecting Gas Turbine Passenger Car Emissions

1972-02-01
720237
The intent of this paper is to put into proper perspective the relationships among the vehicle, the thermodynamic cycle, and the combustion process as they relate to exhaust emissions from a gas turbine-powered passenger car. The influence of such factors as car size, installed power, regeneration, and other cycle variables on level road load fuel economy, and on the production of oxides of nitrogen and carbon monoxide, are examined. In limited checks against experimental data, the mathematical model of the combustor used in this study has proved to be a reliable indicator of emission trends. The calculated emission levels are not final, however, with deficiencies subject to improvement as new combustor concepts are developed.
Technical Paper

Effects of Engine Oil Composition on the Activity of Exhaust Emissions Oxidation Catalysts

1973-02-01
730598
Platinum, palladium, and copper-chromium oxidation catalysts for exhaust emission control were exposed to exhaust gases from a steady-state engine dynamometer test in which the amount of oil consumed per unit volume of catalyst was high. When unleaded gasoline (0.004 Pb g/gal, 0.004 P g/gal) was used, conventional SE oil caused somewhat greater loss of catalyst activity than an ashless and phosphorus-free (“clean”) oil. Chemical analysis of the catalyst indicated that phosphorus from the conventional oil was probably responsible for the difference. However, a test run with low-lead (0.5 Pb g/gal, 0.004 P g/gal) gasoline and “clean” oil caused much greater catalyst activity deterioration than either of the tests with unleaded gasoline.
Technical Paper

Vehicle Evaluation of Synthetic and Conventional Engine Oils

1975-02-01
750827
A five-vehicle, 64 000-km test with 7.45 litre V-8 engines was conducted to determine if synthetic engine oils provided performance sufficiently superior to that of conventional engine oils to permit longer oil change intervals. The results show better performance in two areas of deposit control; inferior performance with respect to wear protection; and essentially equivalent performance in the areas of fuel and oil economies. Based on these data, it was concluded that synthetic engine oils do not provide the necessary performance required to safely recommend their use for extended oil change intervals. In addition, a cost analysis shows that the use of synthetic engine oils, even at a change interval of 32 000 km, will essentially double the customers' cost compared with conventional engine oils at GM's current 12 000-km change interval.
Technical Paper

Lubricant Viscosity Effects on Passenger Car Fuel Economy

1975-02-01
750675
As part of General Motors effort to improve fuel economy, the effects of engine and power train lubricant viscosities were investigated in passenger car tests using either high- or low- viscosity lubricants in the engine, automatic transmission, and rear axle. Fuel economy was determined in both constant speed and various driving cycle tests with the car fully warmed-up. In addition, fuel economy was determined in cold-start driving cycle tests. Using low-viscosity lubricants instead of high-viscosity lubricants improved warmed-up fuel economy by as much as 5%, depending upon the differences in lubricant viscosity and type of driving. Cold-start fuel economy with low-viscosity lubricants was 5% greater than that with high-viscosity lubricants. With such improvements, it is concluded that significant customer fuel economy gains can be obtained by using the lowest viscosity engine and power train lubricants recommended for service.
Technical Paper

Development of Polymeric Materials for Humanlike Neck Simulations

1974-02-01
740993
Several polymeric materials were developed and evaluated for possible inclusion in the neck structure of state-of-the-art anthropomorphic dummies. These included three types of foam-polyvinylchloride, polyethylene, and polyurethane, and two flexible polymers-polyurethane and a polyvinylchloride chlorinated polyethylene blend (PVC-CPE). Two materials, the polyurethane elastomer and the PVC-CPE blend, were found to be satisfactory in their dynamic response. Because of the ease of casting, the polyurethane material will be used in the GMR 1 state-of-the-art dummy.
Technical Paper

Combustion Bomb Tests of Laser Ignition

1974-02-01
740114
Tests of laser ignition are conducted in a combustion bomb. A range of fuels is investigated comprising isooctane, cyclohexane, n-heptane, n-hexane, clear indolene, and No. 1 diesel fuel. The ignition characteristics of laser-induced sparks are compared with sparks generated with a spark plug for different air/fuel ratios. The power density required to produce laser induced sparks is investigated. Although laser ignition appears to be impractical as an ignition device because of its low efficiency and high cost, it presents some interesting possibilities compared to the standard spark plug in that the laser spark is electrodeless and can be positioned anywhere inside the combustion chamber. Its primary use appears to be as a research tool.
Technical Paper

A Rotary Engine Test to Evaluate Lubricants for Control of Rotor Deposits

1974-02-01
740159
During development of the General Motors rotary engine, the lubricant was recognized as important to its success because certain lubricants produced deposits which tended to stick both side and apex seals. Consequently, it was decided to develop a rotary engine-dynamometer test, using a Mazda engine, which could be used for lubricant evaluation. In an investigation using an SE engine oil with which there was rotary engine experience, engine operating variables and engine modifications were studied until the greatest amount of deposits were obtained in 100 h of testing. The most significant engine modifications were: omission of inner side seals, plugging of half the rotor bearing holes, pinning of oil seals, grinding of end and intermediate housings, and using a separate oil reservoir for the metering pump. Using this 100 h test procedure, three engine oils and five automatic transmission fluids were evaluated.
Technical Paper

Emission Control with Lean Operation Using Hydrogen-Supplemented Fuel

1974-02-01
740187
Hydrogen-supplemented fuel was investigated as a means of extending lean operating limits of gasoline engines for control of NOx. Single-cylinder engine tests with small additions of hydrogen to the fuel resulted in very low NOx and CO emissions for hydrogen-isooctane mixtures leaner than 0.55 equivalence ratio. Significant thermal efficiency improvements resulted from the extension beyond isooctane lean limit operation. However, HC emissions increased markedly at these lean conditions. A passenger car was modified to operate at 0.55-0.65 equivalence ratio with supplemental hydrogen. Vehicle emissions, as established by the 1975 Federal Exhaust Emissions Test, demonstrated the same trends as the single-cylinder engine tests. The success of the hydrogen-supplemented fuel approach will ultimately hinge on the development of both a means of controlling hydrocarbon emissions and a suitable hydrogen source on board the vehicle.
Technical Paper

Transmission Air Breathing Suppressor (TABS) Valve - A Device for Improving Automatic Transmission Fluid Life

1974-02-01
740055
Automatic transmission fluids can oxidize with use, causing marginal transmission performance and eventual transmission malfunction. Periodic fluid changes are presently recommended to alleviate this problem. Fluid oxidation is promoted in current transmissions because they breathe air freely through a vent tube. To reduce fluid oxidation, and thereby improve fluid and transmission durability, a one-way check valve, called the Transmission Air Breathing Suppressor (TABS), was designed to restrict the intake of air into the transmission and to replace the conventional vent tube. The effectiveness of the TABS valve in reducing fluid oxidation was determined in high temperature transmission cycling tests and in taxicab tests. Fluid oxidation results with the TABS valve-equipped transmissions were compared to those with normally-vented transmissions. By reducing the amount of oxygen in the transmission gas, the TABS valve nearly eliminated fluid oxidation.
Technical Paper

The Computation of Tearing Energy of Nicked Rubber Strips in Extension

1974-02-01
740325
To compute the tearing energy of nicked rubber strips in extension, one has to solve first the associated stress-deformation involving finite elasticity. In the past, this was a formidable task so that the tearing energy had been determined solely by experiments and only for a few testpieces. With the aid of the finite element method (FEM), it is shown that this may now be done simply through the use of the Rice's J integral. Tearing energy for two testpieces are computed and results compared with existing experimental data. The agreement is good. Because of FEM's ability to treat general geometric and loading conditions, the use of the J integral in combination with FEM to cmpute the tearing energy now allows a wider application of the tearing energy concept to more complex units than hitherto known.
Technical Paper

Designing to Resist Fatigue - Examples of Component Design

1962-01-01
620262
This paper illustrates by way of two practical examples, namely, transmission gears and crankshafts, how the automotive industry applies basic approaches and methods for achieving fatigue resistant design. Analytic, laboratory, and field studies necessary in the development of these components are briefly outlined.
Technical Paper

Exhaust Hydrocarbon and Nitrogen Oxide Concentrations with an Ethyl Alcohol-Gasoline Fuel

1964-01-01
640651
The exhaust hydrocarbon and nitrogen oxide concentrations of a single-cylinder engine, operating on a 25% (wt.) ethyl alcohol – 75% gasoline fuel, are compared to those operating on gasoline. For comparisons at the same airfuel ratio but lower than 15.3, the addition of ethyl alcohol to gasoline reduces the exhaust hydrocarbon concentrations and increases the nitrogen oxide concentrations. At the same air-fuel ratio but higher than 15.3, the addition of ethyl alcohol reduces both the hydrocarbon and nitrogen oxide concentrations. However, tests with automobiles, operating at the same air-fuel ratio with both fuels, indicate that the addition of ethyl alcohol causes an increase in “surge” and, in some cases, results in a power loss. To overcome these performance problems, the ethyl alcohol-gasoline fuel should be operated at about the same percent theoretical air as gasoline.
Technical Paper

Vehicle Handling Response to Aerodynamic Inputs

1964-01-01
640001
The equations of lateral motion response for four wheeled vehicles are developed for external disturbance inputs. Experimental data is obtained through use of a laterally directed hydrogen peroxide rocket motor mounted on a station wagon. The use of a rocket motor provides accurate and flexible control of location and magnitude of the input disturbance. Response data taken from these tests are compared with the responses from a computer model utilizing the disturbance equations. These results are applied to illustrate the effects of wind disturbance on vehicle handling.
Technical Paper

Evaluating the Effect of Fluids on Automatic Transmission Rotating Shaft Seal Elastomers

1966-02-01
660396
The Total Immersion Test (ASTM D 471) for seal elastomers, used in evaluating the compatibility of fluids and seals for automatic transmissions, does not, produce hardness and volume change results similar to those found for rotating shaft seals in service. The Tip Cycle Test was devised to provide better agreement with service results. In the test, one side of the seal is exposed to air, and the other alternately to fluid and to air-fluid vapor. Rotating shaft seals were evaluated in both car and dynamometer transmission tests, and in various bench tests. Agreement was poor between transmission tests and both the Total Immersion and the Dip Cycle Tests. Good agreement was found with the Tip Cycle Test.
X