Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Safe and Secure Software Updates Over The Air for Electronic Brake Control Systems

2016-09-18
2016-01-1145
Vehicle manufacturers are suffering from increasing expenses for fixing software issues. This fact is mainly driving their desire to use mobile communication channels for doing Software Updates Over The Air (SOTA). Software updates today are typically done at vehicle service stations by connecting the vehicles’ electronic network via the On Board Diagnostic (OBD) interface to a service computer. These operations are done under the control of trained technicians. SOTA means that the update process must get handled by the driver. Two critical aspects need to get considered when doing SOTA at Electronic Brake Control (EBC) systems. Both will determine the acceptance of SOTA by legal authorities and by the passengers: The safety and security of the vehicle The availability of the vehicle for the passengers The security aspect includes the necessity to protect the vehicle and the manufacturers IP from unwanted attacks.
Journal Article

The Technology and Economics of In-Wheel Motors

2010-10-19
2010-01-2307
Electric vehicle development is at a crossroads. Consumers want vehicles that offer the same size, performance, range, reliability and cost as their current vehicles. OEMs must make a profit, and the government requires compliance with emissions standards. The result - low volume, compromised vehicles that consumers don't want, with questionable longevity and minimal profitability. In-wheel motor technology offers a solution to these problems; providing power equivalent to ICE alternatives in a package that does not invade chassis, passenger and cargo space. At the same time in-wheel motors can reduce vehicle part count, complexity and cost, feature integrated power electronics, give complete design freedom and the potential for increased regenerative braking (reducing battery size and cost, or increasing range).
Journal Article

ESC Performance of Aftermarket Modified Vehicles: Testing, Simulation, HIL, and the Need for Collaboration

2010-10-19
2010-01-2342
The enactment of FMVSS 126 requires specific safety performance in vehicles 4,536 Kg (10,000 pounds) or less using an Electronic Stability Control (ESC) system as standard equipment by 2011. Further, in 2012, the regulation requires vehicles that have undergone aftermarket modification to remain in compliance with the performance standard. This paper describes: • a brief overview of the standard and its implications • the collaborative approach used in the first successful approach in meeting that requirement by a lift kit manufacturer o a Hardware In the Loop (HIL) test alternative for establishing a reasonable expectation for a vehicle to demonstrate compliance after modification. • Collaborative challenges overcome: o aftermarket manufacturers seeking information sharing with OEMs and Tier One suppliers: o respecting the intellectual property of OEMs and Tier One suppliers o maintaining the integrity between tool competitors and their customers in cross-collaborative efforts
Journal Article

Advances of Virtual Testing and Hybrid Simulation in Automotive Performance and Durability Evaluation

2011-04-12
2011-01-0029
Virtual testing is a method that simulates lab testing using multi-body dynamic analysis software. The main advantages of this approach include that the design can be evaluated before a prototype is available and virtual testing results can be easily validated by subsequent physical testing. The disadvantage is that accurate specimen models are sometimes hard to obtain since nonlinear components such as tires, bushings, dampers, and engine mounts are hard to model. Therefore, virtual testing accuracy varies significantly. The typical virtual rigs include tire and spindle coupled test rigs for full vehicle tests and multi-axis shaker tables for component tests. Hybrid simulation combines physical and virtual components, inputs and constraints to create a composite simulation system. Hybrid simulation enables the hard to model components to be tested in the lab.
Journal Article

Tire Sensors for the Measurement of Slip Angle and Friction Coefficient and Their Use in Stability Control Systems

2011-04-12
2011-01-0095
Intelligent tires are envisioned to be an important part of the future vehicle control systems and the three dimensional wireless MEMS accelerometers embedded inside the tire stand out as a promising candidate for the development of intelligent tires. The first part of the paper focuses on accelerometer based tire sensors for the estimation of slip angle and tire/road friction coefficient. We use a simple tire finite element model to generate lateral, tangential and radial tire accelerations for a fixed load and slip angle. The profiles are validated by using experimental data. The simulated acceleration profiles are used for the estimation of slip angle and tire/road friction coefficient. We present the estimation algorithms, promising simulative results and output sensitivities studies focused on the effects of changes in normal load, tire pressure and vehicle velocity.
Journal Article

Advancement of Vehicle Dynamics Control with Monitoring the Tire Rolling Environment

2010-04-12
2010-01-0108
One of the most important challenges for electronic stability control (ESC) systems is the identification and monitoring of tire rolling environment, especially actual tire-road friction parameters. The presented research considers an advanced variant of the ESC system deducing the mentioned factors based on intelligent methods as fuzzy sets. The paper includes: Overview of key issues in prototyping the algorithms of Electronic Stability Control. Case study for vehicle model. Procedures for monitoring of tire rolling environment: theoretical backgrounds, computing methods, fuzzy input and output variables, fuzzy inference systems, interface with ESC algorithm. Case study for ESC control algorithm. Examples of simulation using Hardware-in-the-Loop procedures. The proposed approach can be widely used for the next-generation of ESC devices having the close integration with Intelligent Transport Systems.
Journal Article

Hydrostatic Wheel Drives for Vehicle Stability Control

2010-04-12
2010-01-0105
Hydrostatic (hydraulic hybrid) drives have demonstrated energy efficiency and emissions reduction benefits. This paper investigates the potential of an independent hydrostatic wheel drive system for implementing a traction-based vehicle lateral stability control system. The system allows an upper level vehicle stability controller to produce a desired corrective yaw moment via a differential distribution of torque to the independent wheel motors. In cornering maneuvers that require braking on any one wheel of the vehicle, the motors can be operated as pumps for re-generating energy into an on-board accumulator. This approach avoids or reduces activation of the friction brakes, thereby reducing energy waste as heat in the brake pads and offering potential savings in brake maintenance costs. For this study, a model of a 4×4 hydrostatic independent wheel drive system is constructed in a causal and modular fashion and is coupled to a 7 DOF vehicle handling dynamics model.
Journal Article

Signal Processing for Rough Road Detection

2010-04-12
2010-01-0673
Misfire diagnostics are required to detect missed combustion events which may cause an increase in emissions and a reduction in performance and fuel economy. If the misfire detection system is based on crankshaft speed measurement, driveline torque variations due to rough road can hinder the diagnosis of misfire. A common method of rough road detection uses the ABS (Anti-Lock Braking System) module to process wheel speed sensor data. This leads to multiple integration issues including complexities in interacting with multiple suppliers, inapplicability in certain markets and lower reliability of wheel speed sensors. This paper describes novel rough road detection concepts based on signal processing and statistical analysis without using wheel speed sensors. These include engine crankshaft and Transmission Output Speed (TOS) sensing information. Algorithms that combine adaptive signal processing and specific statistical analysis of this information are presented.
Journal Article

Truck Utility & Functionality in the GM 2-Mode Hybrid

2010-04-12
2010-01-0826
The present production General Motors 2-Mode Hybrid system for full-size SUVs and pickup trucks integrates truck utility functions with a full hybrid system. The 2-mode hybrid system incorporates two electro-mechanical power-split operating modes with four fixed-gear ratios. The combination provides fuel savings from electric assist, regenerative braking and low-speed electric vehicle operation. The combination of two power-split modes reduces the amount of mechanical power that is converted to electric power for continuously variable transmission operation, meeting the utility required for SUVs and trucks. This paper describes how fuel economy functionality was blended with full-size truck utility functions. Truck functions described include: Manual Range Select, Cruise Control, 4WD-Low and continuous high load operation.
Journal Article

Effect of Regenerative Braking on Foundation Brake Performance

2010-10-10
2010-01-1681
Regenerative braking is one of the key enablers of improved energy efficiency and extension of driving range in parallel and series hybrid, and electric-only vehicles. It is still used in conjunction with friction brakes, due to the enormous amount of energy dissipated in maximum effort stops (and the lack of a competitive alternate technology to accommodate this power level), and to provide braking when on-board energy storage/dissipation devices cannot store enough energy to support braking. Although vehicles equipped with regenerative braking are becoming more and more commonly available, there is little published research on what the dramatic reduction in friction brake usage means to the function of the friction brakes themselves. This paper discusses -with supporting data from analysis and physical tests - some of the considerations for friction brakes related to usage on vehicles with regenerative braking, including corrosion, off-brake wear, and friction levels.
Journal Article

Evaluation of Full and Partial Stability Systems on Tractor Semi Trailer Using Hardware-in-the-Loop Simulation

2010-10-05
2010-01-1902
The application of stability systems on heavy vehicles clearly has numerous advantages, when the cost of the cargo, the service life of vehicles, and the vehicle potential for damage are taken into account. The primary objective of such systems is to assist the driver to maintain control in the face of uncertain driving conditions. The dynamic effects of such system, however, are not widely tested by the industry. The study presented in this paper will present an evaluation of the effects of full and partial stability systems on tractor-trailers using hardware-in-the-loop simulation. With the advancement of simulation capabilities that enables the repeatability of maneuvers, the study presented attempts to provide various deterministic “what-if” scenarios under various vehicle stability system combinations.
Journal Article

Application of the Hardware-in-the-Loop Technique to an Elastomeric Torsional Vibration Damper

2013-12-20
2013-01-9044
This work describes the development and use of the Hardware-in-the-Loop (HIL) technique to evaluate the dynamic behavior of a torsional vibration rubber damper (TVD) used in a spark ignition internal combustion engine. The TVD was adapted to a test bench designed for this research and the HIL technique was applied considering the simulated dynamic response of the crankshaft. The results of the torsional vibration amplitudes are compared with measured values in a steady-state well identified condition, to experimentally validate the proposed mathematical model and the possibility to use the HIL technique to evaluate dampers and crankshaft behavior in realistic long term tests, where the rubber degradation also affects the dynamic response of the system. Finally, it was concluded that simulated and measured signals presented a good correlation in some engine operational conditions, reaching the objectives of this study.
Journal Article

Torque Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt Continuous Variable Transmission

2013-10-15
2013-32-9042
This paper concerns a torque control of a rear wheel of a motorcycle equipped with a rubber/aramid belt electronically-controlled continuous variable transmission where a primary sheave position is controlled by an electric motor. In particular, the paper discusses a method to calculate a required engine torque and a required primary sheave position, given reference values of a rear-wheel torque and an engine rotational velocity. The method forms a foundation of a hierarchized traction control where a higher control layer decides an optimal motorcycle motion (rear-wheel torque and engine rotational velocity) and a lower control layer realizes the motion by actuators (engine torque and primary sheave position). Difficulties of the control are due to large mechanical compliance of the rubber/aramid belt, which leads to an inevitable lag from the primary sheave position to a speed reduction ratio.
Journal Article

Development of Hardware-In-the-Loop Simulation System for Steering Evaluation Using Multibody Kinematic Analysis

2014-04-01
2014-01-0086
The adoption of the electronic controlled steering systems with new technologies has been extended in recent years. They have interactions with other complex vehicle subsystems and it is a hard task for the vehicle developer to find the best solution from huge number of the combination of parameter settings with track tests. In order to improve the efficiency of the steering system development, the authors had developed a steering bench test method for steering system using a Hardware-In-the-Loop Simulation (HILS). In the steering HILS system, vehicle dynamics simulation and the tie rod axial force calculation are required at the same time in the real-time simulation environment. The accuracy of the tie rod axial force calculation is one of the key factors to reproduce the vehicle driving condition. But the calculation cannot be realized by a commercial software for the vehicle dynamics simulation.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Journal Article

Application of Auto-Coding for Rapid and Efficient Motor Control Development

2014-04-01
2014-01-0305
In hybrid and electric vehicles, the control of the electric motor is a critical component of vehicle functions such as motoring, generating, engine-starting and braking. The efficient and accurate control of motor torque is performed by the motor controller. It is a complex system incorporating sensor sampling, data processing, controls, diagnostics, and 3-phase Pulse Width Modulation (PWM) generation which are executed in sub-100 uSec periods. Due to the fast execution rates, care must be taken in the software coding phase to ensure the algorithms will not exceed the target processor's throughput capability. Production motor control development often still follows the path of customer requirements, component requirements, simulation, hand-code, and verification test due to the concern for processor throughput. In the case of vehicle system controls, typically executed no faster than 5-10 mSec periods, auto-coding tools are used for algorithm development as well as testing.
Journal Article

Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes

2014-04-01
2014-01-1562
We present simulated fuel economy and emissions of city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but tailpipe (post-aftertreatment) emissions are affected by complex interactions between engine load and the transient catalyst temperatures, and the emissions results were found to depend significantly on motor size and details of each drive cycle.
Journal Article

Development of a Dynamic Driveline Model for a Parallel-Series PHEV

2014-04-01
2014-01-1920
This paper describes the development and experimental validation of a Plug-in Hybrid Electric Vehicle (PHEV) dynamic simulator that enables development, testing, and calibration of a traction control strategy. EcoCAR 2 is a three-year competition between fifteen North American universities, sponsored by the Department of Energy and General Motors that challenges students to redesign a Chevrolet Malibu to have increased fuel economy and decreased emissions while maintaining safety, performance, and consumer acceptability. The dynamic model is developed specifically for the Ohio State University EcoCAR 2 Team vehicle with a series-parallel PHEV architecture. This architecture features, in the front of the vehicle, an ICE separated from an automated manual transmission with a clutch as well as an electric machine coupled via a belt directly to the input of the transmission. The rear powertrain features another electric machine coupled to a fixed ratio gearbox connected to the wheels.
Journal Article

Design and Testing of ABS for Electric Vehicles with Individually Controlled On-Board Motor Drives

2014-08-01
2014-01-9128
The paper introduces the results of the development of anti-lock brake system (ABS) for full electric vehicle with individually controlled near-wheel motors. The braking functions in the target vehicle are realized with electro-hydraulic decoupled friction brake system and electric motors operating in a braking mode. The proposed ABS controller is based on the direct slip and velocity control and includes several main blocks for computing of predictive (feedforward) and reactive (feedback) brake torque, wheel slip observer, slip target adaptation, and the algorithm of brake blending between friction brakes and electric motors. The functionality of developed ABS has been investigated on the HIL test rig for straight-line braking manoeuvres on different surfaces with variation of initial velocity. The obtained experimental results have been compared with the operation of baseline algorithm of a hydraulic ABS and have demonstrated a marked effect in braking performance.
Journal Article

Multi-Objective Stability Control Algorithm of Heavy Duty Based on EBS

2014-09-30
2014-01-2382
At present, the active safety and stability of heavy vehicles have becoming big concern among the road transportation industry. The purpose of this paper is to specify the research stability and safety of heavy vehicles those set up the accurate and reliable dynamic vehicle reference model and search the method to improve the stability and safety of tractor and semitrailer. A Multi-objective control algorithm was studied to differential braking based on linear quadratic regulator (LQR) control method. Simulation results show that the multi-objective control algorithm can effectively improve the vehicle driving stability and safety.
X