Refine Your Search

Topic

Search Results

Journal Article

Benchmarking Hybrid Concepts: On-Line vs. Off-Line Fuel Economy Optimization for Different Hybrid Architectures

2013-09-08
2013-24-0084
The recent advance in the development of various hybrid vehicle technologies comes along with the need of establishing optimal energy management strategies, in order to minimize both fuel economy and pollutant emissions, while taking into account an increasing number of state and control variables, depending on the adopted hybrid architecture. One of the objectives of this research was to establish benchmarking performance, in terms of fuel economy, for real time on-board management strategies, such as ECMS (Equivalent Consumption Minimization Strategy), whose structure has been implemented in a SIMULINK model for different hybrid vehicle concepts.
Technical Paper

Development and Experimental Validation of a Control-Oriented Empirical Exhaust Gas Temperature Model

2020-09-27
2020-24-0008
Modern turbo-charged downsized engines reach high values of specific power, causing a significant increase of the exhaust gas temperature. Such parameter plays a key role in the overall powertrain environmental impact because it strongly affects both the catalyst efficiency and the turbine durability. In fact, common techniques to properly manage the turbine inlet gas temperature are based on mixture enrichment, which causes both a steep increase in specific fuel consumption and a decrease of catalyst efficiency. At the test bench, exhaust gas temperature is typically measured using thermocouples that are not available for on-board application, and such information is processed to calibrate open-loop look-up-tables. A real-time, reliable, and accurate exhaust temperature model would then represent a strategic tool for improving the performance of the engine control system.
Journal Article

Acoustic Emission Processing for Turbocharged GDI Engine Control Applications

2015-04-14
2015-01-1622
In the field of passenger car engines, recent research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting particularly stringent exhaust emissions limits. Knock and turbocharger control are two of the most critical factors that influence the achievement of maximum efficiency and satisfactory drivability, for this new generation of engines. The sound emitted from an engine encloses many information related to its operating condition. In particular, the turbocharger whistle and the knock clink are unmistakable sounds. This paper presents the development of real-time control functions, based on direct measurement of the engine acoustic emission, captured by an innovative and low cost acoustic sensor, implemented on a platform suitable for on-board application.
Journal Article

Technology Comparison for Spark Ignition Engines of New Generation

2017-09-04
2017-24-0151
New gasoline engine design is highly influenced by CO2 and emission limits defined by legislations, the demand for real conditions fuel economy, higher torque, higher specific power and lower cost. To reach the requirements coming from the end-users and legislations, especially for SI engines, several technologies are available, such as downsizing, including turbocharging in combination with direct injection. These technologies allow to solve the main issues of gasoline engines in terms of efficiency and performance which are knocking, part-load losses, and thermal stress at high power conditions. Moreover, other possibilities are under evaluation to allow further steps of enhancement for the even more challenging requirements. However, the benefits and costs given by the mix of these technologies must be accurately evaluated by means of objective tools and procedures in order to choose among the best alternatives.
Journal Article

Individual Cylinder Air-Fuel Ratio Control for Engines with Unevenly Spaced Firing Order

2017-03-28
2017-01-0610
The most recent European regulations for two- and three-wheelers (Euro 5) are imposing an enhanced combustion control in motorcycle engines to respect tighter emission limits, and Air-Fuel Ratio (AFR) closed-loop control has become a key function of the engine management system also for this type of applications. In a multi-cylinder engine, typically only one oxygen sensor is installed on each bank, so that the mean AFR of two or more cylinders rather than the single cylinder one is actually controlled. The installation of one sensor per cylinder is normally avoided due to cost, layout and reliability issues. In the last years, several studies were presented to demonstrate the feasibility of an individual AFR controller based on a single sensor. These solutions are based on the mathematical modelling of the engine air path dynamics, or on the frequency analysis of the lambda probe signal.
Journal Article

Investigation on Pre-Ignition Combustion Events and Development of Diagnostic Solutions Based on Ion Current Signals

2017-03-28
2017-01-0784
Pre-ignition combustions are extremely harmful and undesired, but the recent search for extremely efficient spark-ignition engines has implied a great increase of the in-cylinder pressure and temperature levels, forcing engine operation to conditions that may trigger this type of anomalous combustion much more frequently. For this reason, an accurate on-board diagnosis system is required to adopt protective measures, preventing engine damage. Ion current signal provides relevant information about the combustion process, and it results in a good compromise between cost, durability and information quality (signal to noise ratio levels). The GDI turbocharged engine used for this study was equipped with a production ion current sensing system, while in-cylinder pressure sensors were installed for research purposes, to better understand the pre-ignition phenomenon characteristics, and to support the development of an on-board diagnostic system solely based on ion current measurements.
Technical Paper

Development of Model-Based OBDII-Compliant Evaporative Emissions Leak Detection Systems

2008-04-14
2008-01-1012
The paper presents the main results obtained by developing and critically comparing different evaporative emissions leak detection diagnostic systems. Three different leak detection methods have been analyzed and developed by using a model-based approach: depressurization, air and fuel vapor compression, and natural vacuum pressure evolution. The methods have been developed to comply with the latest OBD II requirement for 0.5 mm leak detection. Detailed grey-box models of both the system (fuel tank, connecting pipes, canister module, engine intake system) and the components needed to perform the diagnostic test (air compressor or vacuum pump) have been used to analyze in a simulation environment the critical aspects of each of the three methods, and to develop “optimal” diagnostic model-based algorithms.
Technical Paper

Development of a Control-Oriented Engine Model Including Wave Action Effects

2009-09-13
2009-24-0107
This paper describes the development of a control-oriented model that allows the simulation of the Internal Combustion Engine (ICE) thermodynamics, including pressure wave effects. One of the objectives of this work is to study the effects of a Variable Valve Timing (VVT) system on the behavior of a single-cylinder, four-stroke engine installed on a motor scooter. For a single cylinder engine running at relatively high engine speeds, the amount of air trapped into the cylinder strongly depends on intake pressure wave effects: it is essential, therefore, the development of a model that has the ability to resolve the wave-action phenomena, if successful simulation of the VVT system effects is to be performed.
Technical Paper

Implementation of Fuel Film Compensation Algorithm on the Lamborghini Diablo 6.0 Engine

2001-03-05
2001-01-0609
This paper presents the experimental work and the results obtained from the implementation of a transient fuel compensation algorithm for the 6.0-liter V12 high-performance engine that equips the Lamborghini Diablo vehicles. This activity has been carried out as part of an effort aimed at the optimization of the entire fuel injection control system. In the first part of the paper the tests for fuel film compensator identification are presented and discussed. In this phase the experimental work has been conducted in the test cell. An automatic calibration algorithm was developed to identify the well-known fuel film model X and τ parameters, so as to define their maps as a function of engine speed and intake manifold pressure. The influence of engine coolant temperature has been investigated separately; it will be soon presented together with the air dynamics compensation algorithm. In the second part of the paper, the performance of the fuel dynamics compensation algorithm is analyzed.
Technical Paper

Comparison between Formula 1 and CART Acoustic Emission Analysis

2002-12-02
2002-01-3321
The paper presents the application of signal processing algorithms to racing engines acoustic emission signals. The proposed methodology has shown to be effective in extracting from such signals information related to the main powertrain performance parameters, such as engine speed, gear ratios and driver's strategy. The objective of the paper is to compare performance parameters of racing engines that have participated in two different Championships, FIA Formula One World Championship (Formula 1) and CART Champ Car Series (CART). The comparison is quite interesting, since the two formulas differ not only in terms of regulations (and therefore in terms of admissible powertrain layouts), but also in terms of circuits where the races take place. For example, ovals are quite common in CART, and that is not the case of Formula 1: This fact is reflected in the different way the engine and the gearbox are operated during the race.
Technical Paper

Investigation of Knock Damage Mechanisms on a GDI TC Engine

2017-09-04
2017-24-0060
The recent search for extremely efficient spark-ignition engines has implied a great increase of in-cylinder pressure and temperature levels, and knocking combustion mode has become one of the most relevant limiting factors. This paper reports the main results of a specific project carried out as part of a wider research activity, aimed at modelling and real-time controlling knock-induced damage on aluminum forged pistons. The paper shows how the main damage mechanisms (erosion, plastic deformation, surface roughness, hardness reduction) have been identified and isolated, and how the corresponding symptoms may be measured and quantified. The second part of the work then concentrates on understanding how knocking combustion characteristics affect the level of induced damage, and which parameters are mainly responsible for piston failure.
Technical Paper

Development of a Multi-Spark Ignition System for Reducing Fuel Consumption and Exhaust Emissions of a High Performance GDI Engine

2011-04-12
2011-01-1419
The paper presents the development and real-time implementation of a combustion control system based on optimal management of multiple spark discharge events, in order to increase combustion stability, reduce pollutant emissions and fuel consumption, and avoid partial or missing combustion cycles. The proposed approach has been developed as a cost-effective solution to several combustion-related issues that affect Gasoline Direct Injection (GDI) engines during cold start and part load operation. The problem of optimizing combustion efficiency and improving its stability during such operating modes is even more critical for high performance engines, which are designed to maximize charge efficiency especially at medium-high engine speeds.
Technical Paper

Model-Based Assessment of Hybrid Powertrain Solutions

2011-09-11
2011-24-0070
This paper shows the main results of a research activity carried out in order to investigate the impact of different hybridization concepts on vehicle fuel economy during standard homologation cycles (NEDC, FTP75, US Highway, Artemis). Comparative analysis between a standard passenger vehicle and three different hybrid solutions based on the same vehicle platform is presented. The following parallel hybrid powertrain solutions were investigated: Hybrid Electric Vehicle (HEV) solution (three different levels of hybridization are investigated with respect to different Electric Motor Generator size and battery storage/power capacity), High Speed Flywheel (HSF) system described as a fully integrated mechanical (kinetic) hybrid solution based on the quite innovative approach, and hydraulic hybrid system (HHV). In order to perform a fare analysis between different hybrid systems, analysis is also carried out for equal system storage capacities.
Technical Paper

Knock Control Based on Engine Acoustic Emissions: Calibration and Implementation in an Engine Control Unit

2017-03-28
2017-01-0785
In modern turbocharged downsized GDI engines the achievement of maximum thermal efficiency is precluded by the occurrence of knock. In-cylinder pressure sensors give the best performance in terms of abnormal combustion detection, but they are affected by long term reliability issues and still constitute a considerable part of the entire engine management system cost. To overcome these problems, knock control strategies based on engine block vibrations or ionization current signals have been developed and are widely used in production control units. Furthermore, previous works have shown that engine sound emissions can be real-time processed to provide the engine management system with control-related information such as turbocharger rotational speed and knock intensity, demonstrating the possibility of using a multi-function device to replace several sensors.
Technical Paper

Application of Acoustic and Vibration-Based Knock Detection Techniques to a High Speed Engine

2017-03-28
2017-01-0786
Knock control systems based on engine block vibrations analysis are widely adopted in passenger car engines, but such approach shows its main limits at high engine speeds, since knock intensity measurement becomes less reliable due to the increased background mechanical noise. For small two wheelers engines, knock has not been historically considered a crucial issue, mainly due to small-sized combustion chambers and mixture enrichment. Due to more stringent emission regulations and in search of reduced CO2 emissions, an effective on-board knock controller acquires today greater importance also for motorcycle applications, since it could protect the engine when different fuel types are used, and it could significantly reduce fuel consumption (by avoiding lambda enrichment and/or allowing higher compression ratios to be adopted). These types of engines typically work at high rotational speeds and the reduced signal to noise ratio makes knock onset difficult to identify.
Technical Paper

Statistical Analysis of Knock Intensity Probability Distribution and Development of 0-D Predictive Knock Model for a SI TC Engine

2018-04-03
2018-01-0858
Knock is a non-deterministic phenomenon and its intensity is typically defined by a non-symmetrical distribution, under fixed operating conditions. A statistical approach is therefore the correct way to study knock features. Typically, intrinsically deterministic knock models need to artificially introduce Cycle-to-Cycle Variation (CCV) of relevant combustion parameters, or of cycle initial conditions, to generate different knock intensity values for a given operating condition. Their output is limited to the percentage of knocking cycles, once the user imposes an arbitrary knock intensity threshold to define the correlation between the number of knocking events and the Spark Advance (SA). In the first part of the paper, a statistical analysis of knock intensity is carried out: for different values of SA, the probability distributions of an experimental Knock Index (KI) are self-compared, and the characteristics of some percentiles are highlighted.
Technical Paper

Virtual GDI Engine as a Tool for Model-Based Calibration

2012-09-10
2012-01-1679
Recent and forthcoming fuel consumption reduction requirements and exhaust emissions regulations are forcing the development of innovative and particularly complex intake-engine-exhaust layouts. In the case of Spark Ignition (SI) engines, the necessity to further reduce fuel consumption has led to the adoption of direct injection systems, displacement downsizing, and challenging intake-exhaust configurations, such as multi-stage turbocharging or turbo-assist solutions. Further, the most recent turbo-GDI engines may be equipped with other fuel-reduction oriented technologies, such as Variable Valve Timing (VVT) systems, devices for actively control tumble/swirl in-cylinder flow components, and Exhaust Gas Recirculation (EGR) systems. Such degree of flexibility has a main drawback: the exponentially increasing effort required for optimal engine control calibration.
Technical Paper

Ethanol to Gasoline Ratio Detection via Time-Frequency Analysis of Engine Acoustic Emission

2012-09-10
2012-01-1629
In order to reduce both polluting emissions and fuel costs, many countries allow mixing ethanol to gasoline either in fixed percentages or in variable percentages. The resulting fuel is labeled E10 or E22, where the number specifies the ethanol percentage. This operation significantly changes way the stoichiometric value, which is the air-to-fuel mass ratio theoretically needed to completely burn the mixture. Ethanol concentration must be correctly estimated by the Engine Management System to optimally control exhaust emissions, fuel economy and engine performance. In fact, correct fuel quality recognition allows estimating the actual stoichiometric value, thus allowing the catalyst system to operate at maximum efficiency in any engine working point. Moreover, also other essential engine control functions should be adapted in real time by taking into account the quality of the fuel that is being used.
Technical Paper

UEGO-based Exhaust Gas Mass Flow Rate Measurement

2012-09-10
2012-01-1627
New and upcoming exhaust emissions regulations and fuel consumption reduction requirements are forcing the development of innovative and particularly complex intake-engine-exhaust layouts. Especially in the case of Compression Ignition (CI) engines, the HC-CO-NOx-PM after-treatment system is becoming extremely expensive and sophisticated, and the necessity to further reduce engine-out emission levels, without significantly penalizing fuel consumption figures, may lead to the adoption of intricate and challenging intake-exhaust systems configurations. The adoption of both long- and short-route Exhaust Gas Recirculation (EGR) systems is one example of such situation, and the need to precisely measure (or estimate) mass flow rates in the various elements of the gas exchange circuit is one of the consequences.
Technical Paper

Thermal Management Strategies for SCR After Treatment Systems

2013-09-08
2013-24-0153
While the Diesel Particulate Filter (DPF) is actually a quasi-standard equipment in the European Diesel passenger cars market, an interesting solution to fulfill NOx emission limits for the next EU 6 legislation is the application of a Selective Catalytic Reduction (SCR) system on the exhaust line, to drastically reduce NOx emissions. In this context, one of the main issues is the performance of the SCR system during cold start and warm up phases of the engine. The exhaust temperature is too low to allow thermal activation of the reactor and, consequently, to promote high conversion efficiency and significant NOx concentration reduction. This is increasingly evident the smaller the engine displacement, because of its lower exhaust system temperature (reduced gross power while producing the same net power, i.e., higher efficiency).
X