Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

Vapor Pressures of Diesel Fuel Oxygenate Blends

2002-10-21
2002-01-2850
A gas chromatographic technique was used to determine the vapor pressures of blends of six candidate diesel fuel oxygenates with three diesel fuels at 0, 5, 10, 30, and 100 percent blend levels. Both the oxygenates and the diesel fuels were selected to represent a variety of chemical compositions. The vapor pressures were determined over a range of temperatures from -30 C to +30 C. In each case the fraction of the vapor pressure derived from the oxygenate and the fuel was identified. The vapor pressure results showed that there were significant deviations from ideality, leading to both higher and lower vapor pressures than would be predicted from Raoult's Law. These results are significant for fire safety and evaporative emissions as well as for a more basic understanding of the behavior of these blends. Data were also obtained on the heats of vaporization for each of the blends.
Technical Paper

Validation and Instrumentation of a Small Modular Multi-Stage Axial Compressor for Ice Crystal Icing Research

2019-06-10
2019-01-1940
The National Research Council of Canada (NRC) has undergone the development of a Small Axial Compressor Rig for modelling altitude ice accretion in aircraft engines. The rig consists of two axial compressor stages measuring approximately 150mm in diameter, an extension duct to allow residence time for partial melting of ice crystals and a test piece. The axial compressor stages are intended to provide realistic engine conditioning such as fracture, pressure rise, temperature rise and centrifuging of glaciated ice crystals entering the rig. The rig was designed for use in altitude icing wind tunnels such as the NRC’s altitude icing wind tunnel (AIWT), research altitude test facility (RATFac.), and those of other organization such as NASA Glenn and Technical University of Braunshweig. Previous development work [1] provided partial validation of the aerodynamic performance of just the first compressor stage at 90% power.
Journal Article

Validation Testing of Lithium Battery Performance-Based Packaging for Use in Air Transportation (SAE G-27)

2020-03-10
2020-01-0042
The SAE G-27 committee was tasked by ICAO to develop a performance-based packaging standard for lithium batteries transported as cargo on aircraft. The standard details test criteria to qualify packages of lithium batteries & cells for transportation as cargo on-board passenger aircraft. Lithium batteries and cells have been prohibited from shipment as cargo on passenger aircraft since 2016. This paper summarizes the results of the tests conducted by Transport Canada and National Research Council Canada to support the development of this standard with evidence-based recommendations. It includes a description of the test specimens, the test set up, instrumentation used, and test procedures following the standard as drafted to date. The study considered several lithium-ion battery and cell chemistries that were tested under various proposed testing scenarios in the draft standard.
Technical Paper

Using a Sweating Manikin, Controlled by a Human Physiological Model, to Evaluate Liquid Cooling Garments

2005-07-11
2005-01-2971
An Advanced Automotive Manikin (ADAM), is used to evaluate liquid cooling garments (LCG) for advanced space suits for extravehicular applications and launch and entry suits. The manikin is controlled by a finite-element physiological model of the human thermoregulatory system. ADAM's thermal response to a baseline LCG was measured.The local effectiveness of the LCG was determined. These new thermal comfort tools permit detailed, repeatable measurements and evaluation of LCGs. Results can extend to other personal protective clothing including HAZMAT suits, nuclear/biological/ chemical protective suits, fire protection suits, etc.
Technical Paper

Use of a Thermal Manikin to Evaluate Human Thermoregulatory Responses in Transient, Non-Uniform, Thermal Environments

2004-07-19
2004-01-2345
People who wear protective uniforms that inhibit evaporation of sweat can experience reduced productivity and even health risks when their bodies cannot cool themselves. This paper describes a new sweating manikin and a numerical model of the human thermoregulatory system that evaluates the thermal response of an individual to transient, non-uniform thermal environments. The physiological model of the human thermoregulatory system controls a thermal manikin, resulting in surface temperature distributions representative of the human body. For example, surface temperatures of the extremities are cooler than those of the torso and head. The manikin contains batteries, a water reservoir, and wireless communications and controls that enable it to operate as long as 2 hours without external connections. The manikin has 120 separately controlled heating and sweating zones that result in high resolution for surface temperature, heat flux, and sweating control.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

Thermo-Mechanical Fatigue Testing of Welded Tubes for Exhaust Applications

2018-04-03
2018-01-0090
Selected ferritic stainless steel sheets for exhaust applications were tested under thermo-mechanical fatigue (TMF) condition in the temperature range of 400-800 °C with partial constraint. Straight welded tubes were used as the testing coupons to withstand large compression without buckling, and to understand the effect of welding as well. Repeated tests confirmed the observed failure scenario for each material type. The hysteresis loop behaviors were also simulated using the mechanism-based integrated creep and fatigue theory (ICFT) model. Although more development work is needed, for quick material screening purpose this type of testing could be a very cost effective solution for materials and tube weld development for exhaust applications.
Technical Paper

Thermo-Mechanical Fatigue (TMF) Life of Ductile SiMo Cast Iron with Aluminum Addition

2021-04-06
2021-01-0281
Strain controlled thermo-mechanical fatigue (TMF) tests were conducted on a high Silicon ductile cast iron (SiMo) as the baseline material and a similar SiMo cast iron with aluminum addition (SiMoAl). The much improved fatigue life with aluminum addition is analyzed using the integrated creep-fatigue theory (ICFT) in combination with the metallurgical analysis on the tested coupons. Addition of about 3 wt.% Aluminum significantly improved TMF life of the SiMo cast iron. The results are explained by elimination of brittleness at middle temperature range, the higher flow stress, lower creep rate and higher oxidation resistance from Al addition.
Journal Article

The Effects of Ground Simulation on Tractor-Trailer Combinations

2013-09-24
2013-01-2454
The 9-meter wind tunnel of the National Research Council (NRC) of Canada is equipped with a boundary layer suction system, center belt and wheel rollers to simulate ground motion relative to test articles. Although these systems were originally commissioned for testing of full-scale automotive models, they are appropriately sized for ground simulation with half-scale tractor-trailer combinations. The size of the tunnel presents an opportunity to test half-scale commercial vehicles at full-scale Reynolds numbers with a model that occupies 3% of the test section cross-sectional area. This study looks at the effects of ground simulation on the force and pressure data of a half-scale model with rotating tractor wheels. A series of model changes, typical of a drag reduction program, were undertaken and each configuration was tested with both a fixed floor and with full-ground simulation to evaluate the effects of this technology on the total and incremental drag coefficients.
Journal Article

The Development of a Simplified Spot Weld Model for Battelle Structural Stress Calculation

2011-04-12
2011-01-0479
The nodal force based Battelle structural stress method has shown its mesh insensitivity in the stress analysis of spot welds as well as fusion welds. In the conventional structural stress simulation procedure, the structural stress is calculated at the nodes along the nugget periphery. However, implementing a nugget into each spot weld is cumbersome and time consuming not only in preparing mesh for FE analysis but also in preparing a series of structural stress calculation after finishing the FE analysis. Therefore, the efficiency of the current Battelle structural stress practice for spot welds can be improved significantly for structures with a large number of spot welds. The simplified modeling procedure presented here delivers reliable structural stresses at spot welds and these stresses can then be utilized for fatigue life prediction using a master S-N Curve approach that is applicable to wide range of spot welding techniques.
Technical Paper

The Department of Energy's Hydrogen Safety, Codes, and Standards Program: Status Report on the National Templates1

2006-04-03
2006-01-0325
A key to the success of the national hydrogen and fuel cell codes and standards developments efforts to date was the creation and implementation of national templates through which the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory (NREL), and the major standards development organizations (SDOs) and model code organizations coordinate the preparation of critical standards and codes for hydrogen and fuel cell technologies and applications and maintain a coordinated national agenda for hydrogen and fuel cell codes and standards
Technical Paper

The DOE/NREL Environmental Science Program

2001-05-14
2001-01-2069
This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.
Technical Paper

The DOE/NREL Environmental Science & Health Effects Program - An Overview

1999-04-27
1999-01-2249
This paper summarizes current work in the Environmental Science & Health Effects (ES&HE) Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. The goal of the ES&HE Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based and alternative transportation fuels. Each project in the program is designed to address policy-relevant objectives. Studies in the ES&HE Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements, emission inventory development/improvement; and ambient impacts, including health effects.
Journal Article

Testing of Elastomer Icephobic Coatings in the AIWT: Lessons Learned

2019-06-10
2019-01-1994
A study has been conducted into icephobic properties of some highly durable “off-the-shelf” elastomer materials using a rotating ice adhesion test rig installed in the NRC’s Altitude Icing Wind Tunnel. This enabled the formation of ice at environmental conditions similar to those experienced during in-flight icing encounters. Initially, the tests indicated some very positive results with ice adhesion shear stress as low as 8KPa. On further examination, however, it became apparent that the test preparation process, in which the samples were cleaned with an ethanol alcohol solution, influenced the results due to absorption and prolonged retention of the cleaning fluid. The uptake of the ethanol alcohol solution by the elastomer was found to be a function of the surface temperature and remained absorbed into the coating during the ice accretion process changing the characteristics of the coating in such a way that led to a reduction in the ice/surface bond strength.
Technical Paper

Technique for Ice Crystal Particle Size Measurements and Results for the National Research Council of Canada Altitude Ice Crystal Test System

2015-06-15
2015-01-2125
This paper describes the equipment, analysis methods and results obtained for particle size measurements based on a particle imaging velocimetry (PIV) system in which a short duration laser pulse is used to backlight airborne particles. This produces high quality and high resolution images of fast moving airborne particles in a non-intrusive manner. This imaging technique is also used to examine particle morphology and 2D particle trajectory and velocity. The image analysis methods are outlined and validation test results discussed which show the measurement of reference glass beads between 20 and 400 microns were generally to within their stated size. As well, validation testing using known icing wind tunnel droplet distributions were compared with Spraytek 2000 Malvern droplet size measurements and showed agreement of the MVD's to be within ±5% for distributions having nominally 20, 40 and 80 micron MVD's.
Technical Paper

Survey of Potential Safety Issues with Hydrogen-Powered Vehicles

2006-04-03
2006-01-0327
Hydrogen-powered vehicles offer the promise of significantly reducing the amount of pollutants that are expelled into the environment on a daily basis by conventional hydrocarbon-fueled vehicles. While very promising from an environmental viewpoint, the technology and systems that are needed to store the hydrogen (H2) fuel onboard and deliver it to the propulsion system are different from what consumers, mechanics, fire safety personnel, the public, and even engineers currently know and understand. As the number of hydrogen vehicles increases, the likelihood of a rollover or collision of one of these vehicles with another vehicle or a barrier will also increase.
Technical Paper

Statistical Issues in the Evaluation of the Impact of Sulfur in Diesel Fuel on the Performance of Diesel Particulate Filter Emission Control Devices

2000-06-19
2000-01-1958
The Diesel Emission Control - Sulfur Effects (DECSE) program is a joint U.S. government/industry program that studies the impact of diesel sulfur levels on four types of emission control systems. One type of system, Diesel Particulate Filters (DPF), removes particulate matter (PM) from the exhaust stream by collection on a filter. The critical operating issue for DPF technology is the cleaning or regeneration of the control device (by oxidation of the collected PM) to prevent plugging. However, oxidation of sulfur in the exhaust forms sulfates, which are measured as PM. Two types of tests are conducted to evaluate the impacts of fuel sulfur on DPF performance: (1) emissions tests for PM components and gases, and (2) experiments to measure the effect of fuel sulfur on the regeneration temperature required by the filter devices.
Technical Paper

Speciation of Organic Compounds from the Exhaust of Trucks and Buses: Effect of Fuel and After-Treatment on Vehicle Emission Profiles

2002-10-21
2002-01-2873
A study was performed in the spring of 2001 to chemically characterize exhaust emissions from trucks and buses fueled by various test fuels and operated with and without diesel particle filters. This study was part of a multi-year technology validation program designed to evaluate the emissions impact of ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different heavy-duty vehicle fleets operating in Southern California. The overall study of exhaust chemical composition included organic compounds, inorganic ions, individual elements, and particulate matter in various size-cuts. Detailed descriptions of the overall technology validation program and chemical speciation methodology have been provided in previous SAE publications (2002-01-0432 and 2002-01-0433).
Technical Paper

Simulation of Ice Particle Melting in the NRCC RATFac Mixed-Phase Icing Tunnel

2015-06-15
2015-01-2107
Ice crystals ingested by a jet engine at high altitude can partially melt and then accrete within the compressor, potentially causing performance loss, damage and/or flameout. Several studies of this ice crystal icing (ICI) phenomenon conducted in the RATFac (Research Altitude Test Facility) altitude chamber at the National Research Council of Canada (NRCC) have shown that liquid water is required for accretion. CFD-based tools for ICI must therefore be capable of predicting particle melting due to heat transfer from the air warmed by compression and possibly also due to impact with warm surfaces. This paper describes CFD simulations of particle melting and evaporation in the RATFac icing tunnel for the former mechanism, conducted using a Lagrangian particle tracking model combined with a stochastic random walk approach to simulate turbulent dispersion. Inter-phase coupling of heat and mass transfer is achieved with the particle source-in-cell method.
X