Refine Your Search

Topic

Author

Search Results

Technical Paper

Wear Rates of Gears By the Radioactive Method

1955-01-01
550271
A METHOD is described in this paper by which the rates of gear wear under different conditions can be determined by the use of the radioactive tracer technique. With this method one can measure the minutest amount of wear at loads and speeds much below critical destructive conditions. This method makes possible the continuous determination of rates of gear wear at all loads and speeds in actual full-scale units. In this investigation, the radioactive tracer technique has been used to determine the rates of gear wear when using a straight mineral oil and when using an extreme-pressure gear lubricant.
Technical Paper

Visualization of Frequency Response Using Nyquist Plots

2022-03-29
2022-01-0753
Nyquist plots are a classical means to visualize a complex vibration frequency response function. By graphing the real and imaginary parts of the response, the dynamic behavior in the vicinity of resonances is emphasized. This allows insight into how modes are coupling, and also provides a means to separate the modes. Mathematical models such as Nyquist analysis are often embedded in frequency analysis hardware. While this speeds data collection, it also removes this visually intuitive tool from the engineer’s consciousness. The behavior of a single degree of freedom system will be shown to be well described by a circle on its Nyquist plot. This observation allows simple visual examination of the response of a continuous system, and the determination of quantities such as modal natural frequencies, damping factors, and modes shapes. Vibration test data from an auto rickshaw chassis are used as an example application.
Technical Paper

Vibratory Loosening of Bolts

1966-02-01
660432
In this paper, the effects of fluctuating torque on loosening of a tightly seated bolt are investigated. Tests over a wide range of bolt stresses and loosening torques are reported and equipment developed for determination of such effects is described. It is shown that a definite functional relationship exists between the stress on a typical bolt, the oscillatory loosening torque that is applied, and the number of cycles before the bolt becomes loose. The effects of these relationships follow a clearly defined law, although they are, of course, influenced by a number of additional variables.
Journal Article

Vehicle and Drive Cycle Simulation of a Vacuum Insulated Catalytic Converter

2016-04-05
2016-01-0967
A GT-SUITE vehicle-aftertreatment model has been developed to examine the cold-start emissions reduction capabilities of a Vacuum Insulated Catalytic Converter (VICC). This converter features a thermal management system to maintain the catalyst monolith above its light-off temperature between trips so that most of a vehicle’s cold-start exhaust emissions are avoided. The VICC thermal management system uses vacuum insulation around the monoliths. To further boost its heat retention capacity, a metal phase-change material (PCM) is packaged between the monoliths and vacuum insulation. To prevent overheating of the converter during periods of long, heavy engine use, a few grams of metal hydride charged with hydrogen are attached to the hot side of the vacuum insulation. The GT-SUITE model successfully incorporated the transient heat transfer effects of the PCM using the effective heat capacity method.
Technical Paper

Variance Reduction Techniques for Reliability Estimation Using CAE Models

2003-03-03
2003-01-0150
Traditional reliability assessment methods based on physical testing can require prohibitively large sample sizes in many applications. This has led manufacturers to employ virtual testing using CAE models in place of physical testing. However, when the CAE models are not valid, the resulting reliability assessment may be unreliable. In this paper we develop theory and methodology in which traditional physical testing can be used in conjunction with CAE models to create a new type of accelerated testing that requires smaller sample sizes than traditional test plans while exhibiting robustness with respect to inaccuracies in the CAE models. These test plans are implemented by physically testing a biased sample of products and employing a variance reduction technique such as importance sampling. The CAE model is used as a prior belief for failure probability from which one can derive the sampling plan which minimizes the variance.
Technical Paper

Using Artificial Neural Networks for Representing the Air Flow Rate through a 2.4 Liter VVT Engine

2004-10-25
2004-01-3054
The emerging Variable Valve Timing (VVT) technology complicates the estimation of air flow rate because both intake and exhaust valve timings significantly affect engine's gas exchange and air flow rate. In this paper, we propose to use Artificial Neural Networks (ANN) to model the air flow rate through a 2.4 liter VVT engine with independent intake and exhaust camshaft phasers. The procedure for selecting the network architecture and size is combined with the appropriate training methodology to maximize accuracy and prevent overfitting. After completing the ANN training based on a large set of dynamometer test data, the multi-layer feedforward network demonstrates the ability to represent air flow rate accurately over a wide range of operating conditions. The ANN model is implemented in a vehicle with the same 2.4 L engine using a Rapid Prototype Controller.
Technical Paper

Transmission Shift Strategies for Electrically Supercharged Engines

2019-04-02
2019-01-0308
This work investigates the potential improvements in vehicle fuel economy possible by optimizing gear shift strategies to leverage a novel boosting device, an electrically assisted variable speed supercharger (EAVS), also referred to as a power split supercharger (PSS). Realistic gear shift strategies, resembling those commercially available, have been implemented to control upshift and downshift points based on torque request and engine speed. Using a baseline strategy from a turbocharged application of a MY2015 Ford Escape, a vehicle gas mileage of 34.4 mpg was achieved for the FTP75 drive cycle before considering the best efficiency regions of the supercharged engine.
Technical Paper

Theoretical, Computational and Experimental Investigation of Helmholtz Resonators: One-Dimensional versus Multi-Dimensional Approach

1994-03-01
940612
Helmholtz resonators are widely used for the noise reduction in vehicle induction and exhaust systems. This study investigates the effect of specific cavity dimensions of these resonators theoretically, computationally and experimentally. By considering one-dimensional wave propagation through distributed masses in the connector and cavity, a closed-form expression for the transmission loss of axisymmetric configurations is presented, thereby partially eliminating the limitations of a lumped-parameter analysis. Eight resonators of fixed neck geometry and cavity volume with length-to-diameter ratios of the volume varying from 0.32 to 23.92 are studied both computationally and experimentally. The first of the two computational approaches employed in the study implements a finite difference time domain technique to solve the nonlinear governing equations of one-dimensional compressible flow.
Journal Article

The Influence of Road Surface Properties on Vehicle Suspension Parameters Optimized for Ride - Design Trends for Global Markets

2012-04-16
2012-01-0521
Suspension design is influenced by many factors, especially by vehicle dynamics performance in ride, handling and durability. In the global automotive industry it is common to “customize” or tune suspension parameters so that a vehicle is more acceptable to a different customer base and in a different driving environment. This paper seeks to objectively quantify certain aspects of tuning via ride optimization, taking account of market differences in road surface spectral properties and loading conditions. A computationally efficient methodology for suspension optimization is developed using stochastic techniques. A small (B-class) vehicle is chosen for the study and the following main suspension parameters are selected for optimization - spring stiffness, damping rate and vertical tire stiffness. The road is characterized as a stationary random process, using scaling and shaping filters representative of comparable roads in India and the USA.
Technical Paper

The Effects of CO, H2, and C3H6 on the SCR Reactions of an Fe Zeolite SCR Catalyst

2013-04-08
2013-01-1062
Selective Catalytic Reduction (SCR) catalysts used in Lean NOx Trap (LNT) - SCR exhaust aftertreatment systems typically encounter alternating oxidizing and reducing environments. Reducing conditions occur when diesel fuel is injected upstream of a reformer catalyst, generating high concentrations of hydrogen (H₂), carbon monoxide (CO), and hydrocarbons to deNOx the LNT. In this study, the functionality of an iron (Fe) zeolite SCR catalyst is explored with a bench top reactor during steady-state and cyclic transient SCR operation. Experiments to characterize the effect of an LNT deNOx event on SCR operation show that adding H₂ or CO only slightly changes SCR behavior with the primary contribution being an enhancement of nitrogen dioxide (NO₂) decomposition into nitric oxide (NO). Exposure of the catalyst to C₃H₆ (a surrogate for an actual exhaust HC mixture) leads to a significant decrease in NOx reduction capabilities of the catalyst.
Technical Paper

The Effect of Turbulence on the Hydrocarbon Emissions from Combustion in a Constant Volume Reactor

1984-02-01
840366
A cylindrical combustion bomb with dynamic charging system and electro-hydraulic sampling valve is used to study the effects of turbulence on hydrocarbon (HC) emissions from a quench layer and from artificial crevices. The turbulence level is varied by changing the delay time between induction of combustible charge and ignition. Propane-air mixtures were studied over an initial pressure range of 150 to 500 kPa and equivalence ratios of 0.7 to 1.4. Sampling valve experiments show that quench-layer fuel hydrocarbons are extensively oxidized within 5 ms of flame arrival under laminar conditions and that turbulence further reduces the already low level. Upper limit estimates of the residual wall layer HC concentration show that residual quench layer hydrocarbons are only a small fraction of the exhaust HC emission.
Technical Paper

Study of Effects of Thermal Insulation Techniques on a Catalytic Converter for Reducing Cold Start Emissions

2018-04-03
2018-01-1431
Previous work done at the University of Michigan shows the capability of the vacuum-insulated catalytic converter (VICC) to retain heat during soak and the resulting benefits in reducing cold start emissions. This paper provides an improved version of the design which overcomes some of the shortcomings of the previous model and further improves the applicability and benefits of VICC. Also, newer materials have been evaluated and their effects on heat retention and emissions have studied using the 1-D after treatment model. Cold start emissions constitute around 60% to 80% of all the hydrocarbon and CO emissions in present day vehicles. The time taken to achieve the catalyst light-off temperature in a three-way catalytic converter significantly affects the emissions and fuel efficiency. The current work aims at developing a method to retain heat in catalytic converter, thus avoiding the need for light-off and reducing cold start emissions effectively.
Technical Paper

Structure-borne Vehicle Analysis using a Hybrid Finite Element Method

2009-05-19
2009-01-2196
The hybrid FEA method combines the conventional FEA method with the energy FEA (EFEA) for computing the structural vibration in vehicle structures when the excitation is applied on the load bearing stiff structural members. Conventional FEA models are employed for modeling the behavior of the stiff members in the vehicle. In order to account for the effect of the flexible members in the FEA analysis, appropriate damping and spring/mass elements are introduced at the connections between stiff and flexible members. Computing properly the values of these damping and spring/mass elements is important for the overall accuracy of the computations. Utilizing in these computations the analytical solutions for the driving point impedance of infinite or semi-infinite members introduces significant approximations.
Technical Paper

Structural Vibration of an Engine Block and a Rotating Crankshaft Coupled Through Elastohydrodynamic Bearings

2003-05-05
2003-01-1724
A comprehensive formulation is presented for the dynamics of a rotating flexible crankshaft coupled with the dynamics of an engine block through a finite difference elastohydrodynamic main bearing lubrication algorithm. The coupling is based on detailed equilibrium conditions at the bearings. The component mode synthesis is employed for modeling the crankshaft and block dynamic behavior. A specialized algorithm for coupling the rigid and flexible body dynamics of the crankshaft within the framework of the component mode synthesis has been developed. A finite difference lubrication algorithm is used for computing the oil film elastohydrodynamic characteristics. A computationally accurate and efficient mapping algorithm has been developed for transferring information between a high - density computational grid for the elastohydrodynamic bearing solver and a low - density structural grid utilized in computing the crankshaft and block structural dynamic response.
Technical Paper

Robust Prediction of Lane Departure Based on Driver Physiological Signals

2016-04-05
2016-01-0115
Lane change events can be a source of traffic accidents; drivers can make improper lane changes for many reasons. In this paper we present a comprehensive study of a passive method of predicting lane changes based on three physiological signals: electrocardiogram (ECG), respiration signals, and galvanic skin response (GSR). Specifically, we discuss methods for feature selection, feature reduction, classification, and post processing techniques for reliable lane change prediction. Data were recorded for on-road driving for several drivers. Results show that the average accuracy of a single driver test was approx. 70%. It was greater than the accuracy for each cross-driver test. Also, prediction for younger drivers was better.
Journal Article

Reduction of Steering Effort in the Event of EPAS Failure using Differential Braking Assisted Steering

2017-03-28
2017-01-1489
Electric Power Assisted Steering (EPAS) is widely adopted in modern vehicles to reduce steering effort. It is probable that some EPAS systems will experience a shutdown due to reliability issues stemming from electrical and/or electronic components. In the event of EPAS failure, power assist becomes unavailable and the steering system reverts to a fully manual state, leading to excessive steering torque demands from the driver to maneuver the vehicle at lower speeds, i.e., under 30 mph. This situation has resulted in dozens of reported crashes and several OEM safety recalls in the past few years. Inspired by recent work which utilizes independent driving torque of in-wheel-motor vehicles to reduce steering torque, this paper proposes the use of Differential Braking Assisted Steering (DBAS) to alleviate steep increases in steering torque upon EPAS failure. DBAS requires software upgrades with minimal hardware modification to EPAS, which is preferable for a backup system.
Technical Paper

Recent Aircraft Tire Thermal Studies

1982-02-01
821392
A method has been developed for calculating the internal temperature distribution in an aircraft tire while free rolling under load. The method uses an approximate stress analysis of each point in the tire as it rolls through the contact patch, and from this stress change the mechanical work done on each volume element may be obtained and converted into a heat release rate through a knowledge of material characteristics. The tire cross-section is then considered as a body with internal heat generation, and the diffusion equation is solved numerically with appropriate boundary conditions at the wheel and runway surface. Comparisons with buried thermocouples in actual aircraft tires shows good agreement.
Journal Article

Rapidly Pulsed Reductants in Diesel NOx Reduction by Lean NOx Traps: Effects of Mixing Uniformity and Reductant Type

2016-04-05
2016-01-0956
Lean NOx Traps (LNTs) are one type of lean NOx reduction technology typically used in smaller diesel passenger cars where urea-based Selective Catalytic Reduction (SCR) systems may be difficult to package . However, the performance of lean NOx traps (LNT) at temperatures above 400 C needs to be improved. The use of Rapidly Pulsed Reductants (RPR) is a process in which hydrocarbons are injected in rapid pulses ahead of a LNT in order to expand its operating window to higher temperatures and space velocities. This approach has also been called Di-Air (diesel NOx aftertreatment by adsorbed intermediate reductants) by Toyota. There is a vast parameter space which could be explored to maximize RPR performance and reduce the fuel penalty associated with injecting hydrocarbons. In this study, the mixing uniformity of the injected pulses, the type of reductant, and the concentration of pulsed reductant in the main flow were investigated.
Technical Paper

Quantifying the Effect of Initialization Errors for Enabling Accurate Online Drivetrain Simulations

2019-04-02
2019-01-0347
Simulations conducted on-board in a vehicle control module can offer valuable information to control strategies. Continued improvements to on-board computing hardware make online simulations of complex dynamic systems such as drivetrains within reach. This capability enables predictions of the system response to various control actions and disturbances. Implementation of online simulations requires model initialization that is consistent with the physical drivetrain state. However, sensor signals and estimated variables are susceptible to errors, compromising the accuracy of the initialization and any future state predictions as the simulation proceeds through the numerical integration process. This paper describes a drivetrain modeling and analysis method that accounts for initialization errors, thereby enabling accurate simulations of system behaviors.
Technical Paper

Propagation of Uncertainty in Optimal Design of Multilevel Systems: Piston-Ring/Cylinder-Liner Case Study

2004-03-08
2004-01-1559
This paper proposes an approach for optimal design of multilevel systems under uncertainty. The approach utilizes the stochastic extension of the analytical target cascading formulation. The reliability of satisfying the probabilistic constraints is computed by means of the most probable point method using the hybrid mean value algorithm. A linearization technique is employed for estimating the propagation of uncertainties throughout the problem hierarchy. The proposed methodology is applied to a piston-ring/cylinder-liner engine subassembly design problem. Specifically, we assess the impact of variations in manufacturing-related properties such as surface roughness on engine attributes such as brake-specific fuel consumption. Results are compared to the ones obtained using Monte Carlo simulation.
X