Refine Your Search

Topic

Author

Search Results

Technical Paper

Visualization of Fuel-Air Mixing Processes in a Small D.I. Diesel Engine Using the Liquid injection Technique

1988-02-01
880296
Simplified visualization of the fuel spray developing process in a small D.I. diesel engine was made by the liquid injection technique. In this technique, a liquid fuel was injected into another liquid to simulate injection into a high pressure gaseous atmosphere. For obtaining spray characteristics in the liquid similar to a diesel spray in a high-pressure gaseous atmosphere, the similarity principles based on the Reynolds number of the fuel flow at a nozzle hole and empirical equations of the spray penetration including the breakup length were introduced in this study. Especially, the injector was newly designed for the liquid injection technique based on these similarity principles. The behavior of the spray in a swirling flow was investigated. The spray with different breakup length shows different behavior in the same swirling flow.
Technical Paper

Vapor/Liquid Behaviors in Split-Injection D.I. Diesel Sprays in a 2-D Model Combustion Chamber

2003-05-19
2003-01-1837
Some experimental investigations have shown that the trade-off curve of NOx vs. particulate of a D.I. diesel engine with split-injection strategies can be shifted closer to the origin than those with a single-pulse injection, thus reducing both particulate and NOx emissions significantly. It is clear that the injection mass ratios and the dwell(s) between injection pulses have significant effects on the combustion and emissions formation processes in the D.I. diesel engine. However, how and why these parameters significantly affect the engine performances remains unexplained. The effects of both injection mass ratios and dwell between injections on vapor/liquid distributions in the split-injection diesel sprays impinging on a flat wall have been examined in our previous work.
Technical Paper

Using Artificial Neural Networks for Representing the Air Flow Rate through a 2.4 Liter VVT Engine

2004-10-25
2004-01-3054
The emerging Variable Valve Timing (VVT) technology complicates the estimation of air flow rate because both intake and exhaust valve timings significantly affect engine's gas exchange and air flow rate. In this paper, we propose to use Artificial Neural Networks (ANN) to model the air flow rate through a 2.4 liter VVT engine with independent intake and exhaust camshaft phasers. The procedure for selecting the network architecture and size is combined with the appropriate training methodology to maximize accuracy and prevent overfitting. After completing the ANN training based on a large set of dynamometer test data, the multi-layer feedforward network demonstrates the ability to represent air flow rate accurately over a wide range of operating conditions. The ANN model is implemented in a vehicle with the same 2.4 L engine using a Rapid Prototype Controller.
Journal Article

Understanding the Dynamic Evolution of Cyclic Variability at the Operating Limits of HCCI Engines with Negative Valve Overlap

2012-04-16
2012-01-1106
An experimental study is performed for homogeneous charge compression ignition (HCCI) combustion focusing on late phasing conditions with high cyclic variability (CV) approaching misfire. High CV limits the feasible operating range and the objective is to understand and quantify the dominating effects of the CV in order to enable controls for widening the operating range of HCCI. A combustion analysis method is developed for explaining the dynamic coupling in sequences of combustion cycles where important variables are residual gas temperature, combustion efficiency, heat release during re-compression, and unburned fuel mass. The results show that the unburned fuel mass carries over to the re-compression and to the next cycle creating a coupling between cycles, in addition to the well known temperature coupling, that is essential for understanding and predicting the HCCI behavior at lean conditions with high CV.
Technical Paper

Two-Dimensional Measurements of the Fuel Vapor Concentration in the Combustion Chamber of a SI Engine with Laser Rayleigh Scattering

1992-10-01
922389
An experimental study was made of the two-dimensional distributions of the fuel vapor concentration simulated by Freon-12 in the combustion chamber of a SI engine. Laser Rayleigh scattering was applied for this remote, nonintrusive and highly space- and time-resolved measurement. The original engine was modified to introduce YAG laser-induced sheet light into the combustion chamber and the scattered light was captured by a CCD camera fitted with a gated double-microchannel plate image intensifier. The results showed that the fuel vapor concentration was highly heterogeneous during the intake stroke and the inhomogeneity decreased in the compression stroke. But, even at the end of the compression stroke, a number of small lumps of inhomogeneous mixture still existed randomly in the engine combustion chamber, which is assumed to cause the heterogeneity of the mixture strength field at the spark discharge.
Technical Paper

Turbocharger Matching for a 4-Cylinder Gasoline HCCI Engine Using a 1D Engine Simulation

2010-10-25
2010-01-2143
Naturally aspirated HCCI operation is typically limited to medium load operation (∼ 5 bar net IMEP) by excessive pressure rise rate. Boosting can provide the means to extend the HCCI range to higher loads. Recently, it has been shown that HCCI can achieve loads of up to 16.3 bar of gross IMEP by boosting the intake pressure to more than 3 bar, using externally driven compressors. However, investigating HCCI performance over the entire speed-load range with real turbocharger systems still remains an open topic for research. A 1 - D simulation of a 4 - cylinder 2.0 liter engine model operated in HCCI mode was used to match it with off-the-shelf turbocharger systems. The engine and turbocharger system was simulated to identify maximum load limits over a range of engine speeds. Low exhaust enthalpy due to the low temperatures that are characteristic of HCCI combustion caused increased back-pressure and high pumping losses and demanded the use of a small and more efficient turbocharger.
Technical Paper

Total In-Cylinder Sampling Experiment on Emission Formation Processes in a D.I. Diesel Engine

1990-10-01
902062
An experimental study on emission formation processes, such as these of nitric oxide, particulate and total hydrocarbon in a small direct injection (D.I.) diesel engine was carried out by using a newly developed total in-cylinder sampling technique. The sampling method consisted of rapidly opening a blowdown valve attached to the bottom of the piston bowl, and quickly transferring most of the in-cylinder contents into a large sampling chamber below the piston. No modification of the intake and exhaust ports in a cylinder head was required for the installation of the blowdown apparatus. The sampling experiment gave a history of spatially-averaged emission concentrations in the cylinder. The effects of several engine variables, such as the length-to-diameter ratio of the nozzle hole, the ratio of the piston bowl diameter to the cylinder bore and the intake swirl ratio, on the emission formation processes were investigated.
Technical Paper

Three-Dimensional Spray Distributions in a Direct Injection Diesel Engine

1994-09-01
941693
Experiments and modeling of a spray impinged onto a cavity wall of a simulated piston were performed under simulated diesel engine conditions (pressure and density) at an ambient temperature. The diesel fuel was delivered from a Bosch-type injection pump to a single-hole nozzle, the hole being drilled in the same direction as the original five-hole nozzle. The fuel was injected into a high-pressure bomb in which an engine combustion chamber, composed of a piston, a cylinder head and a cylinder liner, was installed. Distributions of the spray impinged on the simulated combustion chamber were observed from various directions while changing some of the experimental parameters, such as combustion chamber shape, nozzle projection and top-clearance. High-speed photography was used in the constant volume bomb to examine the effect of these parameters on the spray distributions.
Technical Paper

The Potential of the Variable Stroke Spark-Ignition Engine

1997-02-24
970067
A comprehensive quasi-dimensional computer simulation of the spark-ignition (SI) engine was used to explore part-load, fuel economy benefits of the Variable Stroke Engine (VSE) compared to the conventional throttled engine. First it was shown that varying stroke can replace conventional throttling to control engine load, without changing the engine characteristics. Subsequently, the effects of varying stroke on turbulence, burn rate, heat transfer, and pumping and friction losses were revealed. Finally these relationships were used to explain the behavior of the VSE as stroke is reduced. Under part load operation, it was shown that the VSE concept can improve brake specific fuel consumption by 18% to 21% for speeds ranging from 1500 to 3000 rpm. Further, at part load, NOx was reduced by up to 33%. Overall, this study provides insight into changes in processes within and outside the combustion chamber that cause the benefits and limitations of the VSE concept.
Technical Paper

The Effects of CO, H2, and C3H6 on the SCR Reactions of an Fe Zeolite SCR Catalyst

2013-04-08
2013-01-1062
Selective Catalytic Reduction (SCR) catalysts used in Lean NOx Trap (LNT) - SCR exhaust aftertreatment systems typically encounter alternating oxidizing and reducing environments. Reducing conditions occur when diesel fuel is injected upstream of a reformer catalyst, generating high concentrations of hydrogen (H₂), carbon monoxide (CO), and hydrocarbons to deNOx the LNT. In this study, the functionality of an iron (Fe) zeolite SCR catalyst is explored with a bench top reactor during steady-state and cyclic transient SCR operation. Experiments to characterize the effect of an LNT deNOx event on SCR operation show that adding H₂ or CO only slightly changes SCR behavior with the primary contribution being an enhancement of nitrogen dioxide (NO₂) decomposition into nitric oxide (NO). Exposure of the catalyst to C₃H₆ (a surrogate for an actual exhaust HC mixture) leads to a significant decrease in NOx reduction capabilities of the catalyst.
Technical Paper

The Effect of the Location of Knock Initiation on Heat Flux Into an SI Combustion Chamber

1997-10-01
972935
A study has been conducted in order to investigate the effect of the location of knock initiation on heat flux in a Spark-Ignition (SI) combustion chamber. Heat flux measurements were taken on the piston and cylinder head under different knock intensity levels, induced by advancing the spark timing. Tests were performed with two engine configurations, the first with the spark-plug located on the rear side of the chamber and the other having a second non-firing spark-plug placed at the front side of the chamber. The presence of the non-firing spark-plug consistently shifted the location of autoignition initiation from the surface of the piston to its vicinity, without causing a noticeable increase in knock intensity. By localizing the initiation of knock, changes induced in the secondary flame propagation pattern affected both the magnitude and the rate of change of peak heat flux under heavy knock.
Technical Paper

The Development of Throttled and Unthrottled PCI Combustion in a Light-Duty Diesel Engine

2006-04-03
2006-01-0202
Present-day implementations of premixed compression ignition low temperature (PCI) combustion in diesel engines use higher levels of exhaust gas recirculation (EGR) than conventional diesel combustion. Two common devices that can be used to achieve high levels of EGR are an intake throttle and a variable geometry turbocharger (VGT). Because the two techniques affect the engine air system in different ways, local combustion conditions differ between the two in spite of, in some cases, having similar burn patterns in the form of heat release. The following study has developed from this and other observations; observations which necessitate a deeper understanding of emissions formation within the PCI combustion regime. This paper explains, through the use of fundamental phenomenological observations, differences in ignition delay and emission indices of particulate matter (EI-PM) and nitric oxides (EI-NOx) from PCI combustion attained via the two different techniques to flow EGR.
Technical Paper

Spray and Mixture Properties of Hole-Type Injector for D. I. Gasoline Engine-Comparison of Experiment and CFD Simulation-

2007-07-23
2007-01-1850
An experimental and numerical study was conducted on the spray and mixture properties of a hole-type injector for direct injection (D. I.) gasoline engines. The Laser Absorption Scattering (LAS) technique was adopted to simultaneously measure the spatial concentration distributions and the mass of the liquid and vapor phases in the fuel spray injected into a high-pressure and high-temperature constant volume vessel. The experimental results were compared to the numerical calculation results using three-dimensional CFD and the multi-objective optimization. In the numerical simulation, the design variable of the spray model was optimized by choosing spray tip penetration, and mass of liquid and vapor phases as objective functions.
Technical Paper

Spray and Flame Behaviors of Ethanol-Gasoline Blend Injected by Hole-Type Nozzle for DISI Engine

2015-09-01
2015-01-1950
Different ethanol-gasoline blended fuels, namely the E0 (100% gasoline), E85 (85% ethanol and 15% gasoline mixed in volume basis) and E100 (100% ethanol) were injected by a valve-covered-orifice (VCO) hole-type nozzle in a condition simulating the near top dead center (TDC). Two typical injection pressures of 10 and 20MPa were adopted to clarify the spray and flame behaviors. The correlation of the upstream unburned fuel and the flame propagation was analyzed by the high-speed imaging of shadowgraph. Moreover, the effects of ignition timing and location on the flame propagation were discussed based on the imaging of OH* chemiluminescence.
Technical Paper

Spray and Evaporation Characteristics of Multi-Hole Injector for DISI Engines - Effect of Diverging Angle Between Neighboring Holes

2009-04-20
2009-01-1500
Experimental and computational studies were carried out to characterize the spray development and evaporation processes of multi-hole injector for direct injection spark ignition (DISI) engines. The main injector parameter to be investigated in this study is a diverging angle between neighboring two holes. In the experimental study, the influence of the diverging angle on evaporation process of fuel spray from two-hole injector was investigated using Laser Absorption Scattering (LAS) measurement. Smaller diverging angle causes larger spray tip penetration because the momentum of the spray from one hole emphasizes another, when two spray merge to one. Moreover, spray tip penetration decreases at certain diverging angle due to the negative pressure region between two sprays. Mechanisms behind the above spray behaviors were discussed using the detailed information on the spray and ambient gas flow fields obtained by the three dimensional computational fluid dynamics (CFD).
Technical Paper

Spray Characteristics of Group-hole Nozzle for D.I. Diesel Engine

2003-10-27
2003-01-3115
Reduction of orifice diameter of nozzle is advantageous to the fuel atomization in a D.I. diesel engine. However, the diameter reduction is usually accompanied with decrease of spray tip penetration, thus worsening fuel spatial-distribution and fuel-air mixing. In this paper, a group-hole nozzle concept was proposed to solve the problem resulting from minimization of orifice diameter. Compared to the conventional multi-hole nozzle, group-hole nozzle has a series group of orifices, and each group consists of two micro-orifices with a small spatial interval and small angle. For examining the characteristics of the spray injected by the group-hole nozzle, the ultraviolet-visible laser absorption-scattering (LAS) imaging technique was adopted to determine vapor concentration and droplets density as well as other spray characteristics such as spray angle and penetration of both vapor and liquid phases.
Technical Paper

Split Injection Spray Development, Mixture Formation, and Combustion Processes in a Diesel Engine Piston Cavity: Rig Test and Real Engine Results

2018-09-10
2018-01-1698
The objectives of this study are to investigate the effects of premixed charge compression ignition (PCCI) strategies with split injection on soot emission characteristics. The split injection conditions included three injection intervals (1.1 ms, 1.3 ms, and 1.5 ms) and three injection quantity fraction ratios (Q1/Q2 = 10.0/14.6 mm3/st, 15.2/9.4 mm3/st, and 20.0/4.6 mm3/st). The results in real engine tests showed that shorter injection intervals, and the 1st injection quantity contributes to reduced soot emissions. A rig test with high-pressure and high-temperature constant-volume vessel (CVV) and a two-dimensional (2D) model piston cavity were used to determine correlations between injection conditions and soot emissions. During the rig test, fuel was injected into the CVV by a single-hole nozzle under split injection strategies. The injection strategies include the same injection intervals and quantity fraction ratios as in the real engine test.
Technical Paper

Speciated Hydrocarbon Emissions from an Automotive Diesel Engine and DOC Utilizing Conventional and PCI Combustion

2006-04-03
2006-01-0201
Premixed compression ignition low-temperature diesel combustion (PCI) can simultaneously reduce particulate matter (PM) and oxides of nitrogen (NOx). Carbon monoxide (CO) and total hydrocarbon (THC) emissions increase relative to conventional diesel combustion, however, which may necessitate the use of a diesel oxidation catalyst (DOC). For a better understanding of conventional and PCI combustion, and the operation of a platinum-based production DOC, engine-out and DOC-out exhaust hydrocarbons are speciated using gas chromatography. As combustion mode is changed from lean conventional to lean PCI to rich PCI, engine-out CO and THC emissions increase significantly. The relative contributions of individual species also change; increasing methane/THC, acetylene/THC and CO/THC ratios indicate a richer combustion zone and a reduction in engine-out hydrocarbon incremental reactivity.
Journal Article

Small Injection Amount Fuel Spray Characteristics Injected by Hole-Type Nozzle for D.I. Diesel Engine

2014-11-11
2014-32-0124
Spray characteristics under very small injection amount injected by the hole-type nozzle for a D.I. Diesel engine were investigated using the spray test rig consisting a high-pressure and high-temperature constant volume vessel with optical accesses and a common rail injection system. The Laser Absorption Scattering (LAS) technique was used to visualize the liquid and vapor phase distributions in the evaporating spray. In the very small injection amount condition of the evaporating and free (no wall impingement) spray, the both spray tip penetration and spray angle are larger than those of the non-evaporating free spray. This tendency contradicts the previous observation of the diesel spray with large injection amount and the quasi steady state momentum theory. In the case of the spray impinging on a 2-dimensional piston cavity wall, the spray tip penetration of the evaporating spray is larger than that of the non-evaporating spray.
Technical Paper

Simultaneous Reduction of NOX and Soot in a Heavy-Duty Diesel Engine by Instantaneous Mixing of Fuel and Water

2007-04-16
2007-01-0125
Meeting diesel engine emission standards for heavy-duty vehicles can be achieved by simultaneous injection of fuel and water. An injection system for instantaneous mixing of fuel and water in the combustion chamber has been developed by injecting water in a mixing passage located in the periphery of the fuel spray. The fuel spray is then entrained by water and hot air before it burns. The experimental work was carried out on a Rapid Compression Machine and on a Komatsu direct-injection heavy-duty diesel engine with a high pressure common rail fuel injection system. It was also supported by Computational Fluid Dynamics simulations of the injection and combustion processes in order to evaluate the effect of water vapor distribution on cylinder temperature and NOX formation. It has been concluded that when the water injection is appropriately timed, the combustion speed is slower and the cylinder temperature lower than in conventional diesel combustion.
X