Refine Your Search

Topic

Search Results

Technical Paper

Transforming AADL Models Into SysML 2.0: Insights and Recommendations

2024-03-05
2024-01-1947
In recent years, the increasing complexity of modern aerospace systems has driven the rapid adoption of robust Model-Based Systems Engineering (MBSE). MBSE is a development methodology centered around computational models, which are instrumental in supporting the design and analysis of intricate systems. In this context, the Architecture Analysis and Design Language (AADL) and Systems Modeling Language (SysML) are two prominent modeling languages for specifying and analyzing the structure and behavior of a cyber-physical system. Both languages have their own specific use cases and tool environments and are typically employed to model different aspects of system design. Although multiple software tools are available for transforming models from one language to another, their effectiveness is limited by fundamental differences in the semantics of each language.
Technical Paper

Terrain Streaming for Real-Time Vehicle Dynamics

2024-04-09
2024-01-2659
This paper describes an approach to integrating high-fidelity vehicle dynamics with a high-fidelity gaming engine, specifically with respect to terrain. The work is motivated by the experimental need to have both high-fidelity visual content with high-fidelity vehicle dynamics to drive a motion base simulator. To utilize a single source of terrain information, the problem requires the just-in-time sharing of terrain content between the gaming engine and the dynamics model. The solution is implemented as a client-server with the gaming engine acting as a stateless server and the dynamics acting as the client. The client is designed to actively maintain a locally cashed terrain grid around the vehicle and actively refresh it by polling the server in an on-demand mode of operation. The paper discusses the overall architecture, the protocol, the server, and the client designs. A practical implementation is described and shown to effectively function in real-time.
Magazine

Tech Briefs: September 2018

2018-09-01
Enhanced SATCOMs for Unmanned Aerial Systems The Bus Too Tough to Die Combating Infrared Threats on the Battlefield Optical Interconnect Design Challenges in Space High-Performance Computing for the Next-Generation Combat Vehicle Merging Antenna and Electronics Boosts Energy and Spectrum Efficiency Integrated Magneto-Optical Devices for On-Chip Photonic Systems Development of magneto-optical (MO) materials could lead to a range of nonreciprocal optical devices for emerging standardized photonic integrated circuit (PIC) fabrication processes. Low Power Optical Phase Array Using Graphene on Silicon Photonics Electrostatic doping of 2D materials embedded in waveguides could enable ultrafast devices with unprecedented power. Spatial Resolution and Contrast of a Focused Diffractive Plenoptic Camera New technology captures spectral and spatial information of a scene in one snapshot while raising pixel counts and improving image quality.
Magazine

Tech Briefs: May 2018

2018-05-01
New Technologies Tackle UAV Challenges Robotic Applique Kits Leverage Existing Assets Educating UGVs Implementing AI Advancements in Thermal Image Training Data Sets Protecting Critical Data on Unmanned Underwater Platforms Advancements Made to the Wingman Software-in-the-Loop (SIL) Simulation: How to Operate the SIL New features include the creation of virtual environments that match real-world gunnery test courses. Soldier-Robot Team Communication: An Investigation of Exogenous Orienting Visual Display Cues and Robot Reporting Preferences The effective use of robots to conduct dangerous missions depends on accurate man-machine communications. Soft Robotic Fish Swims Alongside Real Ones in Coral Reefs GPS Enabled Semi-Autonomous Robot Combining GPS signals with acoustic and encoder data gives a robot the ability to determine its location and orientation within a reference frame.
Magazine

Tech Briefs: June 2018

2018-06-01
Beyond VMEbus - A New Concept Taming the Thermal Behavior of Solid-State Military Lasers Solving the Challenge of Thermal Design in Aerospace Electronics Improving Component Life in Abrasive, Corrosive Aerospace Environments New Pulse Analysis Techniques for Radar and EW Validation of Ubiquitous 2D Radar Converting Existing Copper Wire Firing System to a Fiber-Optically Controlled Firing System for Electromagnetic Pulsed Power Experiments Technological improvements make pulsed-power experiments with gunpowder- or air-driven guns safer. Low-Cost Ground Sensor Network for Intrusion Detection COTS-based system could provide increased level of security with less manpower. In-Network Processing on Low-Cost IoT Nodes for Maritime Surveillance Commercially available system of distributed wireless sensors could increase the Navy's intelligence collection footprint.
Magazine

Tech Briefs: April 2018

2018-04-01
Laser Detecting Systems Enhancing Survivability and Lethality on the Battlefield Designing With Plastics for Military Equipment Engine Air-Brakes Paving the Way to Quieter Aircraft Nett Warrior Enhancing Battlefield Connectivity and Communications XPONENTIAL 2018 - An AUVSI Experience Communications in Space: A Deep Subject First Air-Worthy Metal-Printed RF Filter Ready for Takeoff Validation of Automated Prediction of Blood Product Needs Algorithm Processing Continuous Non-Invasive Vital Signs Streams (ONPOINT4) Using a combination of non-invasive sensors, advanced algorithms, and instruments built for combat medics could reduce hemorrhaging and improve survival rates. Calculation of Weapon Platform Attitude and Cant Using Available Sensor Feedback Successful development of mobile weapon systems must incorporate operation on sloped terrain.
Journal Article

TOC

2024-02-12
Abstract TOC
Article

SAE International extends call for abstracts, seeks submissions for AeroTech conference

2022-08-11
Engineering Events staff at SAE International in Warrendale, Pennsylvania, have extended the call for abstracts through September 21 for the organization’s AeroTech aerospace and defense technology conference, which will take place at the Fort Worth Convention Center in Fort Worth, Texas, March 14-16, 2023. Visit the AeroTech call for abstracts page for more information and to get started.
Article

Quality management experts provide guidance on AS9100 standard

2021-11-04
Quality management professionals across the global aerospace and defense community are convening for one hour – Wednesday, October 27th, starting at 10 am Pacific Daylight Time (PDT) – to discuss the AS9100 international standard. Register to take part in the free AeroTech webinar, hosted by SAE International and Tektronix, designed to help manufacturers, contractors, and subcontractors throughout the global aviation, space, and defense supply chain keep pace with and meet the requirements of AS9100 international quality management system standard.
Research Report

Process Control for Defect Mitigation in Laser Powder Bed Fusion Additive Manufacturing

2023-05-15
EPR2023011
Success in metal additive manufacturing (AM) relies on the optimization of a large set of process parameters to achieve materials whose properties and performance meet design and safety requirements. Despite continuous improvements in the process over the years, the quality of AM parts remains a major concern for manufacturers. Today, researchers are starting to move from discrete geometry-dependent build parameters to continuously variable or dynamically changing parameters that are geometry- and scan-path aware. This approach has become known as “feedforward control.” Process Control for Defect Mitigation in Laser Powder Bed Fusion Additive Manufacturing discusses the origins of feedforward control, its early implementations in AM, the current state of the art, and a path forward to its broader adoption. Click here to access the full SAE EDGETM Research Report portfolio.
Technical Paper

Optimizing Occupant Restraint Systems for Tactical Vehicles in Frontal Crashes

2018-04-03
2018-01-0621
The objective of this study was to optimize the occupant restraint systems for a light tactical vehicle in frontal crashes. A combination of sled testing and computational modeling were performed to find the optimal seatbelt and airbag designs for protecting occupants represented by three size of ATDs and two military gear configurations. This study started with 20 sled frontal crash tests to setup the baseline performance of existing seatbelts, which have been presented previously; followed by parametric computational simulations to find the best combinations of seatbelt and airbag designs for different sizes of ATDs and military gear configurations involving both driver and passengers. Then 12 sled tests were conducted with the simulation-recommended restraint designs. The test results were further used to validate the models. Another series of computational simulations and 4 sled tests were performed to fine-tune the optimal restraint design solutions.
Technical Paper

Numerical Analysis of Lightweight Materials and their Combinations to Understand their Behaviour against High Pressure Shock Loading

2023-05-25
2023-28-1311
Materials play a key role in our day to day life and have shaped the industrial revolution to a great extent. Right selection of material for meeting a particular objective is the key to success in today’s world where the cost as well as sustainability of any equipment or a system have assumed greater significance than ever before. In automotive industry, materials have a definitive role as far as the mobility and safety is concerned. Materials that can absorb the required energy or impact can be manufactured through different manufacturing as well as metallurgical processes which involves appropriate heat treatment and bringing correct chemical compositions etc. However, they can also be formed by simpler methods such as combining certain materials together in the form of layered combinations to form light weight composites.
Standard

NATIONAL AEROSPACE AND DEFENSE CONTRACTORS ACCREDITATION PROGRAM REQUIREMENTS FOR NONCONVENTIONAL MACHINING

2002-02-01
HISTORICAL
AS7116
This Aerospace Standard (AS) establishes the requirements for suppliers of Nonconventional Machining Services to be accredited by the National Aerospace and Defense Contractors Accreditation Program (NADCAP). NADCAP accreditation is granted in accordance with SAE AS7003 after demonstration of compliance with the requirements herein. The requirements may be supplemented by additional requirements specified by the NADCAP Nonconventional Machining and Surface Enhancement (NMSE) Task Group. Using the corresponding Audit Criteria (PRI AC7116) will ensure that accredited Nonconventional Machining suppliers meet all of the requirements in this standard and all applicable supplementary standards. The purpose of this audit program is to assess a supplier's ability to consistently provide a product or service that conforms to the technical specifications and customer requirements.
Technical Paper

Multi-Layer Framework for Synthesis and Evaluation of Heterogeneous System-of-Systems Composed of Manned and Unmanned Vehicles

2018-10-30
2018-01-1964
The advancement of both sensory and unmanned technology, combined with increased utilization of autonomous platforms in complex teaming scenarios, has created a need for practical design space exploration tools to aid in the synthesis of effective System-of-Systems (SoS). The presented work describes a modular, flexible, and extensible framework, referred to herein as the Technologies and Teaming Evaluation (TATE) framework, for straightforward identification of high-quality SoS, which may include both manned and autonomous elements, through quantitative evaluation of system-level and SoS-level attributes against a set of user-defined reference tasks.
Technical Paper

Methodology and Results of Testing an Impact of F-34 Fuel on the Engine Reliability

2020-09-15
2020-01-2133
An application of the new kind of the fuel for the diesel engine requires to conduct the qualification tests of the engines powered by this his fuel which allow assessing an impact of fuel on the engine reliability. Such a qualification test of the piston and turbine engines of the aircraft stationed on the ground and land vehicles is described in the NATO standardisation agreement (STANAG) 4195 as the AEP-5 test. The methodology and selected results of the qualification tests of the SW-680 turbocharged multi-purpose diesel engine fuelled with F-34 fuel have been presented in this paper. A dynamometric stand with the SW-680 engine has been described. Based on the preliminary results of the investigation it has been found that a change in a type of the fuel from IZ-40 diesel fuel into F-34 kerosene-type one has reduced a maximum engine torque by about 4%. This has been primarily due to a lower fuel density of F-34 by about 3%.
Technical Paper

Implementation of Active & Passive Safety for Heavy Article Tilter and Positioner (HATP)

2019-01-09
2019-26-0003
Mobile heavy article tilter and positioner (HATP) is special purpose vehicle designed to level, articulate and positioning of very heavy load within the accuracy of arc minutes and in a stipulated time in fully auto mode. HATP system uses sophisticated electronic controller system to carry out required task in auto mode. This electronic controller system comprises of various types of electronic hardware, software, sensors and actuators. As this system is dealing with heavy load, any failure in any of subsystem of HATP can result into catastrophe. Therefore active and passive safety measure at various levels must be incorporated into system which firstly prevents the failure and reduce the effect of failure. The safety system for HATP system has been divided in three major levels: 1. Access level safety 2. Operational safety 3. Preventive safety. All three levels of safety is incorporated at appropriate subsystem based on Risk Priority Number (RPN) and failure mode effect analysis.
Book

Hall-Scott: The Untold Story of a Great American Engine Maker

2007-01-25
Author Francis Bradford, a former Hall-Scott engineer, provides valuable resources and insight not available to any other Hall-Scott researcher. Well-illustrated with numerous photos, drawings, and memos, this fascinating book will be of interest to history buffs in the areas of aviation, rail, marine, trucks, buses, fire equipment, and industrial engines, and to World War and military historians.
Technical Paper

Experimental Stress/Strain Analysis of a Standardized Sensor Platform for a C-130 Aircraft

2005-10-03
2005-01-3426
Project Oculus is an in-flight deployable mechanical arm/pod system that will accommodate 500 pounds of sensor payload, developed for a C-130 military aircraft. The system is designed for use in counter narco-terrorism and surveillance applications by the Department of Defense and the National Guard [1]. A prototype of the system has been built and is in the testing/analysis phase. The purpose of this study was to analyze the actual stresses and strains in the critical areas found using previous Finite Element (FE) simulations and to ensure that acceptable safety requirements have been met. The system components tested will be redesigned, tested, and reconstructed in the case of unacceptable safety factors or if more reliable methods can be implemented. The system was built to be deployed and retracted in flight, to avoid causing any problems in take off and landing.
X