Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Approach to Particulate Measurement on Transient Test Cycles: Partial Flow Dilution as Alternative to CVS Full Flow Systems

2000-03-06
2000-01-1134
In a subproject of the aim to develop a worldwide certification procedure for heavy-duty on-highway engines (WHDC), the measuring technique for future low emitting engines was evaluated. One aspect is the introduction of partial flow dilution systems for the particulates measurement during transient test cycles instead of the currently required full flow dilution systems. This paper presents an investigation about the influence of sensitive sampling parameters on particulate mass and composition under steady state and transient engine operating conditions, and their effect on the correlation between partial flow and full flow dilution systems. The study has shown that the sampling parameters investigated have no or only minor influence on particulate mass and composition. Both partial flow dilution systems proved their transient capability by tracking the exhaust flow signal very well.
Technical Paper

A Two-Measurement Correction for the Effects of a Pressure Gradient on Automotive, Open-Jet, Wind Tunnel Measurements

2006-04-03
2006-01-0568
This paper provides a method that corrects errors induced by the empty-tunnel pressure distribution in the aerodynamic forces and moments measured on an automobile in a wind tunnel. The errors are a result of wake distortion caused by the gradient in pressure over the wake. The method is applicable to open-jet and closed-wall wind tunnels. However, the primary focus is on the open tunnel because its short test-section length commonly results in this wake interference. The work is a continuation of a previous paper [4] that treated drag only at zero yaw angle. The current paper extends the correction to the remaining forces, moments and model surface pressures at all yaw angles. It is shown that the use of a second measurement in the wind tunnel, made with a perturbed pressure distribution, provides sufficient information for an accurate correction. The perturbation in pressure distribution can be achieved by extending flaps into the collector flow.
Journal Article

Analysis of the Piston Group Friction in a Single-Cylinder Gasoline Engine When Operated with Synthetic Fuel DMC/MeFo

2022-03-29
2022-01-0485
Synthetic fuels for internal combustion engines offer CO2-neutral mobility if produced in a closed carbon cycle using renewable energies. C1-based synthetic fuels can offer high knock resistance as well as soot free combustion due to their molecular structure containing oxygen and no direct C-C bonds. Such fuels as, for example, dimethyl carbonate (DMC) and methyl formate (MeFo) have great potential to replace gasoline in spark-ignition (SI) engines. In this study, a mixture of 65% DMC and 35% MeFo (C65F35) was used in a single-cylinder research engine to determine friction losses in the piston group using the floating-liner method. The results were benchmarked against gasoline (G100). Compared to gasoline, the density of C65F35 is almost 40% higher, but its mass-based lower heating value (LHV) is 2.8 times lower. Hence, more fuel must be injected to reach the same engine load as in a conventional gasoline engine, leading to an increased cooling effect.
Technical Paper

Correction of Nozzle Gradient Effects in Open Jet Wind Tunnels

2004-03-08
2004-01-0669
In open jet wind tunnels with high blockage ratios a sharp rise in drag is observed for models approaching the nozzle exit plane. The physical background for this rise in drag will be analyzed in the paper. Starting with a basic analysis of the dependencies of the effect on model and wind tunnel properties, the key parameters of the problem will be identified. It will be shown using a momentum balance and potential flow theory that interaction between model and nozzle exit can result in significant tunnel-induced gradients at the model position. In a second step, a CFD-based investigation is used to show the interaction between nozzle exit and a bluff body. The results cover the whole range between open jet and closed wall test section interaction. The model starts at a large distance from the nozzle, then moves towards the nozzle, enters the nozzle and is finally completely inside the nozzle.
Technical Paper

ECU Integrated DSP Based Measurement System for Combustion Analysis

2000-03-06
2000-01-0547
For development of new engines a ‘general purpose ECU’ for spark ignition engines with up to 12 cylinders has been developed. As part of this ECU a DSP (Digital Signal Processor)-based measurement unit for high frequency combustion analysis has been integrated. In this paper, details about this signal processing platform are given. The DSP-unit has 24 analog input channels. 12 channels are used for cylinder pressure measurement; the other 12 channels are general purpose ones. For example, they can be used for ionic current analysis. Additional digital inputs allow measurement of crank speed and crank speed variations. This is an important topic for misfire detection as part of the OBD regulations.
Technical Paper

Emissions Performance of GTL Diesel Fuel and Blends with Optimized Engine Calibrations

2005-05-11
2005-01-2187
The results of a comprehensive experimental investigation into the exhaust emission performance and combustion properties of neat and blended Gas-To-Liquids (GTL) diesel fuel are presented. A sulphur-free European diesel fuel was used as the reference fuel, and two blends of the GTL diesel fuel with the reference fuel, containing 20% and 50% GTL diesel fuel respectively, were investigated. The study was based on a Mercedes Benz 2.2 liter passenger car diesel engine and presents emission data for both the standard engine calibration settings, as well as settings which were optimized to match the characteristics of each fuel. Vehicle emission tests showed that the GTL diesel fuel results in reductions in HC and CO emissions of greater than 90%, while PM is reduced by 30%, and NOx remains approximately unchanged. Engine bench dynamometer tests showed reductions in soot of between 30% and 60%, and NOx reductions of up to 10% with the GTL diesel fuel, depending on the operating point.
Technical Paper

Equations and Methods for Testing Hydrogen Fuel Consumption using Exhaust Emissions

2008-04-14
2008-01-1036
Although hydrogen ICE engines have existed in one sort or another for many years, the testing of fuel consumption by way of exhaust emissions is not yet a proven method. The current consumption method for gasoline- and diesel-fueled vehicles is called the Carbon-Balance method, and it works by testing the vehicle exhaust for all carbon-containing components. Through conservation of mass, the carbon that comes out as exhaust must have gone in as fuel. Just like the Carbon-Balance method for gas and diesel engines, the new Hydrogen-Balance equation works on the principle that what goes into the engine must come out as exhaust components. This allows for fuel consumption measurements without direct contact with the fuel. This means increased accuracy and simplicity. This new method requires some modifications to the testing procedures and CVS (Constant Volume Sampling) system.
Technical Paper

Experimental Investigations and Computations of Unsteady Flow Past a Real Car Using a Robust Elliptic Relaxation Closure with a Universal Wall Treatment

2007-04-16
2007-01-0104
In the present work we investigated experimentally and computationally the unsteady flow around a BMW car model including wheels*. This simulation yields mean flow and turbulence fields, enabling the study aerodynamic coefficients (drag and lift coefficients, three-dimensional/spatial wall-pressure distribution) as well as some unsteady flow phenomena in the car wake (analysis of the vortex shedding frequency). Comparisons with experimental findings are presented. The computational approach used is based on solving the complete transient Reynolds-Averaged Navier-Stokes (TRANS) equations. Special attention is devoted to turbulence modelling and the near-wall treatment of turbulence. The flow calculations were performed using a robust, eddy-viscosity-based ζ - ƒ turbulence model in the framework of the elliptic relaxation concept and in conjunction with the universal wall treatment, combining integration up to the wall and wall functions.
Technical Paper

Flow around an Isolated Wheel - Experimental and Numerical Comparison of Two CFD Codes

2004-03-08
2004-01-0445
This paper presents velocity and pressure measurements obtained around an isolated wheel in a rotating and stationary configuration. The flow field was investigated using LDA and a total pressure probe in the model scale wind tunnel at IVK/FKFS. Drag and lift were determined for both configurations as well as for the wheel support only. These results were used as a reference for comparing numerical results obtained from two different CFD codes used in the automotive industry, namely STAR-CD™ and PowerFLOW™. The comparison gives a good overall agreement between the experimental and the simulated data. Both CFD codes show good correlation of the integral forces. The influence of the wheel rotation on drag and lift coefficients is predicted well. All mean flow structures which can be found in the planes measured with LDA can be recognized in the numerical results of both codes. Only small local differences remain, which can be attributed to the different CFD codes.
Technical Paper

Generation of Realistic Communication Scenarios for the Simulation of Automotive Multiplex Systems

1995-02-01
950294
The increasing complexity of communication protocols for asynchronous multiplex systems requires the use of simulation during the optimisation of these protocols or the integration of other control units. Consideration of realistic communication behaviour of the connected control units is essential for performance analysis of multiplex systems. For a first pass, the use of simple statistical distributions (e.g. Poisson distribution) is suitable to get some simulation results. A better way to get realistic results is the approximation of empirical communication data through the use of more complex statistical distribution (e.g. mixed Erlang distributions). In this paper several approaches for the approximation of empirical data are presented. Beside simple statistical distributions (with one parameter), the use of more complex statistical distributions is discussed and methods for the identification of their parameters are presented.
Technical Paper

Influence of Plenum Dimensions on Drag Measurements in 3/4-Open-Jet Automotive Wind Tunnels

1995-02-01
951000
The size of the room surrounding the wind tunnel test section, the so called wind tunnel plenum, is always seen as an important parameter of the wind tunnel building, but has rarely been the subject of systematic investigation regarding minimal requirements to meet quality objectives for aerodynamic testing. Experimental investigations of this object were made in a quarter-scale wind tunnel (nozzle area 1.4m2). The plenum dimensions were changeable by combinations of different side wall and ceiling positions. The results have shown, that the plenum can have a significant effect on the flow around the vehicle and therefore on the measured forces. Drag coefficient is under prediced if the wind tunnel plenum is too small. Recommendations are provided for the geometric dimensions of a wind tunnel plenum. The data obtained are a valuable tool for the layout of wind tunnel design concepts and for the evaluation of interference free wind tunnel simulation.
Journal Article

Investigations on the Spray-Atomization of Various Fuels for an Outwardly Opening Piezo Injector for the Application to a Pilot Injection Passenger Car Gas Engine

2020-09-15
2020-01-2117
Pilot injection gas engines are commonly used as large stationary engines. Often, the combustion is implemented as a dual-fuel strategy, which allows both mixed and diesel-only operation, based on a diesel engine architecture. The current research project focuses on the application of pilot injection in an engine based on gasoline components of the passenger car segment, which are more cost-effective than diesel components. The investigated strategy does not aim for a diesel-only combustion, hence only small liquid quantities are used for the main purpose of providing a strong, reliable ignition source for the natural gas charge. This approach is mainly driven to provide a reliable alternative to the high spark ignition energies required for high cylinder charge densities. When using such small liquid quantities, a standard common-rail diesel nozzle will apparently not be ideal regarding some general specifications.
Technical Paper

Measurement of Reference Dynamic Pressure in Open-Jet Automotive Wind Tunnels

1992-02-01
920344
In automotive open-jet wind tunnels reference velocity is usually measured in terms of a static pressure difference between two different cross-sectional areas of the tunnel. Most commonly used are two sections within the nozzle (Method 1: ΔP-Nozzle). Sometimes, the reference velocity is deduced from the static pressure difference between settling chamber and plenum (Method 2: ΔP-Plenum). Investigations in three full-scale open-jet automotive wind tunnels have clearly shown that determination of reference dynamic pressure according to ΔP-Plenum is physically incorrect. Basically, all aerodynamic coefficients, including drag coefficient, obtained by this method are too low. For test objects like cars and vans it was found that the error ΔcD depends on the test object's drag blockage in an open-jet wind tunnel.
Technical Paper

Model-Based Calibration of an Automotive Climate Control System

2020-04-14
2020-01-1253
This paper describes a novel approach for modeling an automotive HVAC unit. The model consists of black-box models trained with experimental data from a self-developed measurement setup. It is capable of predicting the temperature and mass flow of the air entering the vehicle cabin at the various air vents. A combination of temperature and velocity sensors is the basis of the measurement setup. A measurement fault analysis is conducted to validate the accuracy of the measurement system. As the data collection is done under fluctuating ambient conditions, a review of the impact of various ambient conditions on the HVAC unit is performed. Correction models that account for the different ambient conditions incorporate these results. Numerous types of black-box models are compared to identify the best-suited type for this approach. Moreover, the accuracy of the model is validated using test drive data.
Technical Paper

Multidimensional Optimization of In-Cylinder Tumble Motion for the New Chrysler Hemi

2002-05-06
2002-01-1732
The current is an investigation of the effects of charge motion, namely tumble, on the burn characteristics of the new Chrysler Hemi SI engine. In order to reduce prototyping, several combustion system designs were evaluated; some of which were eliminated prior to design inception solely based on CFD simulations. The effects of piston top and number of spark plugs were studied throughout the conceptual stage with the AVL-FIRE CFD code. It has been concluded that large-scale, persistent and coherent tumbling flow structures are essential to charge motion augmentation at ignition only if such structures are decimated right before ignition. Piston top had a detrimental effect on tumbling charge motion as the piston approaches the TDC. When compared to single spark plug operation, dual spark plug reflected considerable improvement on burn characteristics and engine performance as a consequence. The CFD simulations demonstrated good correlation with early dynamometer data.
Technical Paper

New Acoustic Test Facilities of BMW

1985-05-15
850992
BMW has introduced new test stands for noise measurements on passenger cars and motorcycles. Information is given on room conditions, machinery equipment, sound levels, frequency ranges and types of measurement. The semi-anechoic room is designed for measuring the sound distribution emitted by a single vehicle. Road influence is simulated by a reflecting floor and a roller-dynamometer. The free field sound distribution in terms of distance and direction is measured in the anechoic room. This room has high-precision installations for sound source identification and noise mapping. The reverberation room serves to measure sound power emitted by the test object. Its second purpose is to subject the bodywork to a high-power external sound source and to measure the sound-deadening effect of the passenger compartment. In conclusion, the presentation provides reports on the initial experience with these test facilities.
Journal Article

Novel Index for Evaluation of Particle Formation Tendencies of Fuels with Different Chemical Compositions

2017-08-18
2017-01-9380
Current regulatory developments aim for stricter emission limits, increased environmental protection and purification of air on a local and global scale. In order to find solutions for a cleaner combustion process, it is necessary to identify the critical components and parameters responsible for the formation of emissions. This work provides an evaluation process for particle formation during combustion of a modern direct injection engine, which can help to create new aftertreatment techniques, such as a gasoline particle filter (GPF) system, that are fit for purpose. With the advent of “real driving emission” (RDE) regulations, which include market fuels for the particulate number testing procedure, the chemical composition and overall quality of the fuel cannot be neglected in order to yield a comparable emission test within the EU and worldwide.
Technical Paper

Numerical Analysis of the Flow Over Convertibles

2001-05-14
2001-01-1762
In the present study, the exterior air flow over convertibles together with the interior flow in the passenger compartment has been calculated using the commercial CFD program STAR-CD. The investigations have been performed for a SLK-class Mercedes with two occupants. The computational mesh consists of about 3 million hexahedra cells. The detailed informations of the calculated flow field have been used to elaborate the characteristic flow phenomena and increase the physical understanding of the flow. The influence of different geometrical modifications (variations of roof spoiler, variations of the draft stop behind the seats etc.) on the flow field and the air draft experienced by the occupants has been analyzed. To proof the accuracy of the numerical results, wind tunnel experiments in a full scale and 1:5 scale wind tunnel have been carried out for the basic car model as well as for several geometrical variations.
Technical Paper

On Road Testing of Advanced Common Rail Diesel Vehicles with Biodiesel from the Jatropha Curcas plant

2005-10-23
2005-26-356
This paper addresses the use of neat, indigenous biodiesel in advanced Mercedes-Benz passenger cars. Modern, unmodified EU3 Common-Rail diesel engines with second generation common rail technology were used to determine the effects of neat biodiesel on performance and emission characteristics. The biodiesel was made from the seeds of the Jatropha Curcas plant and sourced from the Central Salt and Marine Chemicals Research Institute in Bhavnagar, India. The production of biodiesel and the vehicle tests are part of a PPP project, funded jointly by the DaimlerChrysler AG and the German DEG. The project aims at providing additional jobs and income in rural Indian areas along with reclaiming unused wasteland. The test vehicles were operated for a cumulative 8000 kilometers with an intention to expose the vehicle and fuel to diverse climatic conditions.
Technical Paper

Panel Noise Contribution Analysis: An Experimental Method for Determining the Noise Contributions of Panels to an Interior Noise

2003-05-05
2003-01-1410
A new method for estimating the sound pressure level (SPL) at a defined position of the interior is presented. It is possible to recalculate the interior noise dependent on the sound radiated by specified panels which encloses the interior. It could be applied to analyse the interior acoustics under different operating conditions. This could be normal driving on real roads or pure wind noise inside wind tunnels. Also it is possible to study the interior noise under an artificial force excitation applied to the trimmed body. The method is based on the theoretical background of TPA (= Transfer Path Analysis /1/ ) via matrix inversion. It was tested on a simple cuboid structure with an artificial force excitation. The comparison of the measured and recalculated SPL of the interior shows a good correlation. Also the influence of some physical modifications at identified critical areas corresponds with the expected influence to the measured SPL inside this structure.
X