Refine Your Search

Topic

Search Results

Technical Paper

A Predicting and Improvement of Side Impact Using the CC-CTP

1993-03-01
930443
Extensive researches are being performed on a world wide basis with the aim of enhancing occupant protection on the side impact. The test methodology for side impact can be divided into two general groups; Sub-System Tests Full Scale Tests. However, the advantages of full scale test is that it is possible to make an integrated statement on the protective potential of the structural stiffness of the struck vehicle and the padding for a selected collision speed and type of collision. The advantages of sub-system test methodology can be simulates more exactly for wide range of accident(i.e. collision directions, impact points etc.). The latter test procedure can be carried out at a relatively earlier stage in the development of a new vehicle, and also can be reduce the time and cost. The Computer Controlled Composite Test Procedure(CC-CTP) presented in this paper has been developed by CCMC (Committee of Common Market Automobile Constructors).
Journal Article

A Study on How to Utilize Hilly Road Information in Equivalent Consumption Minimization Strategy of FCHEVs

2014-04-01
2014-01-1827
This paper presents an adaptation method of equivalent factor in equivalent consumption minimization strategy (ECMS) of fuel cell hybrid electric vehicle (FCHEV) using hilly road information. Instantaneous optimization approach such as ECMS is one of real-time controllers. Furthermore, it is widely accepted that ECMS achieves near-optimum results with the selection of the appropriate equivalent factor. However, a lack of hilly road information no longer guarantees near-optimum results as well as charge-sustaining of ECMS under hilly road conditions. In this paper, first, an optimal control problem is formulated to derive ECMS analytical solution based on simplified models. Then, we proposed updating method of equivalent factor based on sensitivity analysis. The proposed method tries to mimic the globally optimal equivalent factor trajectory extracted from dynamic programming solutions.
Technical Paper

An Improved Methodology for Calculation of the Inertial Resistance of Automotive Latching Systems

2014-04-01
2014-01-0544
This paper outlines an improved methodology to perform calculations to verify the compliance of automotive door latch systems to minimum legal requirements as well as to perform additional due diligence calculations necessary to comprehend special cases such as roll over crashes and locally high inertial loadings. This methodology builds on the calculation method recommended by SAE J839 and provides a robust and clear approach for application of this method to cable release systems, which were not prevalent at the time J839 was originally drafted. This method is useful in and of itself but its utility is further increased by the application of the method to a Computer Aided Design (CAD) template (in this case for Catia V5), that allows some automation of the calculation process for a given latch type. This will result in a savings of time, fewer errors and allows for an iterative concurrent analysis during the design process.
Technical Paper

Automatic steering control using CCD camera

2000-06-12
2000-05-0367
In this paper we present the vision system used by the autonomous intelligent vehicle to sense the surrounding environment. With the B/W CCD camera, the system is able to detect the lane marking and to localize the vehicle''s position in real time and, thanks to an electric DC motor mounted on the steering column, it can autonomously steer the vehicle. We tested the system by implementing on EF SONATA (Hyundai Motor Co.) in the test field of laboratory and verified that the steering control drove the vehicle as smoothly as a human being along both straight and curve roads with maximum 100 k/h.
Technical Paper

Design Method of Test Road Profile for Vehicle Accelerated Durability Test

1993-11-01
931911
This report explains the basic theory of designing the accelerating durability test road and the role of each factors contributing to the test road surface profile. Also this road is designed by considering the charactors of vehicle suspension system and conditions of driving. In test road, the factors affecting to the vehicle structural durability are correlation among surface shape of road profile, frequency of vehicle suspension system,distribution of axle twist angle and vibration of road profile height. Road PSD magnitude and frequency delay is used to control these factors relation.
Technical Paper

Development of Structure-Occupant Integrated Analysis Method

1995-02-01
951058
Structure-occupant related method, which uses some structural analysis results for inputs of occupant simulation, has being used widely even if it is difficult to describe real crash precisely. The method is not proper to simulate complex situation such as an occupant behavior restrained with air bag in out-of-position impact. A structure-occupant integrated method is needed to analyze these sophisticated problems in the early stage of design. Therefore, Hyundai Motor Co. tried to develop the method, and the process is described in this paper. The integrated vehicle model includes Hybrid III dummy, air bag, seat belt and interior detail models. The interior detail models are instrument panel, knee bolsters, steering wheel and column, and seats. The part models were compared with the part test results and they were merged into larger models only if they passed correlation test.
Journal Article

Development of Virtual Road Wheel Input Forces for Belgian Ground

2014-04-01
2014-01-0381
Numerical durability analysis is the only approach that can be used to assess the durability of vehicles in early stages of development. In these stages, where there are no physical prototypes available, the road wheel forces (or spindle forces) for durability testing on Belgian PG (Proving Ground) must be predicted by VPG (Virtual Proving Ground) or derived from the measured forces of predecessor vehicles. In addition, the tuning parts and geometry are not fixed at these stages. This results in the variation of spindle forces during the development stages. Therefore, it is not reasonable to choose the forces predicted at a specific tuning condition as standard forces. It is more reasonable to determine the standard forces stochastically using the DB of the measured forces of predecessor vehicles. The spindle forces measured or predicted on Belgian PG are typically stationary random.
Technical Paper

Development of finite element Euro-SID model

2000-06-12
2000-05-0197
In contrast to the other types of crash simulations, integrated analysis is needed to perform the side impact simulation, and the acquired injury values are so sensitive that they are difficult to assess by the deformed vehicle structure itself. Accurate FE Euro-side impact dummy (EURO-SID) model is needed to predict the various injury values in Euro side-impact simulation. In the past, rigid body model and coarse FE model have been used. The advantage of these models is low computing power. By the way, they have lack of injury predictability in integrated simulations. The deviations are caused by inaccurate geometry and improper material characteristics expression for individual components. Therefore, new Euro side-impact dummy model is developed through mass (inertia), component and sled validation. In this paper, validation results are illustrated, and their application results in two kinds of full car simulations are introduced.
Technical Paper

Development of the Overmolding Instrument Panel

2013-03-25
2013-01-0018
We developed the hard IP (Instrument Panel) that is integrally over molded with a soft layer (TPO, Thermo Plastic Olefin) for the soft feeling and cost reduction. And also we produced the cost-effective PAB(Passenger-side Airbag) door system that had an in-mold tearseam and avoided competitors' patents simultaneously. The development procedure of this technology is; ① Material for overmolding ② Design optimization ③ Solving tool challenges. The reduction of process through integrally molding with soft material helped to accomplish a soft feeling on the IP and cost reduction at the same time. The deployment, head impact and heat aging tests were conducted and 5 patents were applied such as the optimization of the mold structure and injection condition.
Technical Paper

Invisible Advanced Passenger-Side Airbag Door Design for Optimal Deployment and Head Impact Performance

2004-03-08
2004-01-0850
Hard panel types of invisible passenger-side airbag (IPAB) door system must be designed with a weakened area such that the airbag will deploy through the Instrument Panel (IP) in the intended manner, with no flying debris at any required operating temperature. At the same time, there must be no cracking or sharp edges in the head impact test (ECE 21.01). If the advanced-airbag with the big difference between high and low deployment pressure ranges are applied to hard panel types of IPAB door system, it becomes more difficult to optimize the tearseam strength for satisfying deployment and head impact performance simultaneously. We introduced the ‘Operating Window’ idea from quality engineering to design the hard panel types of IPAB door applied to the advanced-airbag for optimal deployment and head impact performance. To accurately predict impact performance, it is important to characterize the strain rate.
Technical Paper

Invisible PAB Door Development Using Two-shot Molding

2010-04-12
2010-01-0684
Invisible Passenger-side Airbag (IPAB) door system must be designed with a weakened area such that the airbag will break through the Instrument Panel (IP) in the intended manner, with no flying debris at any temperature. At the same time, there must be no cracking or sharp edges at the head impact test (ECE 21.01). Needless to say, Head impact test must keep pace with the deployment test. In this paper, we suggested soft airbag door system that is integrally molded with a hard instrument panel by using Two-shot molding. First of all, we set up the design parameters of IPAB door for the optimal deployment and head impact performance by CAE analysis. And then we optimized the open-close time at each gate of the mold so that the soft and hard material could be integrally molded with the intended boundary. We could make the boundary of two materials more constant by controlling the open-close time of each gate with resin temperature sensor.
Technical Paper

Optimization of Body Structure for Road Noise Performance

2014-04-01
2014-01-0010
It is common knowledge that body structure is an important factor of road noise performance. Thus, a high stiffness of body system is required, and determining their optimized stiffness and structure is necessary. Therefore, a method for improving body stiffness and validating the relationship between stiffness and road noise through CAE and experimental trials was tested. Furthermore, a guideline for optimizing body structure for road noise performance was suggested.
Technical Paper

Optimization of Slot Disc Shape for Improving Brake Fade Performance

2018-10-05
2018-01-1883
Due to improvements in vehicle powertrain performance, friction material fade performance is becoming an important topic. For this reason, needs for studies to improve thermal characteristics of the brake system is increasing. Methods for improving the fade characteristics have several ways to improve the thermal characteristic of friction materials and increase disc capacity. However, increasing disc capacity(size) have some risk of weight and cost rise, and friction factor improvements in friction material tend to cause other problems, such as increasing squeal wire brush noise and increasing metal pick up on disc surface. Therefore, a slot disc study is needed to overcome the problems discussed previously. Currently, there is few research history for slot disc related to fade and metal pickup improvements.
Technical Paper

Optimization of the Crashworthiness of a Passenger Car Using Iterative Simulations

1993-11-01
931977
The paper describes an engineering project carried out to optimize the crashworthiness of an existing passenger car for frontal crash using a procedure relying on numerical simulation. An optimization target is defined in terms of an ideal acceleration pulse at the seats anchors. The acceleration time history and structural members are scanned in parallel to correlate the local acceleration peaks to specific structural members. Members details are iteratively modified in order to alter the accelerations and get closer to the target.
Technical Paper

Seat Common Frame Design Optimization

2010-04-12
2010-01-0390
Due to technological evolutions and social demands, motor vehicles are requested to be enhanced in terms of occupant safety and comfort. As a result, many countries are reinforcing crash regulations and new car assessment programs. Automotive seats are essential parts for providing passenger safety and comfort and have become most important. Many automotive companies concentrate on optimization of the seat structure. This paper presents an overview of the recent evolution of the seat structures and gives a development procedure covering seat frame design, optimization and validation. Through the study, a competitive frame design is drawn as a case result and a design guideline and a standard development procedure is established
Technical Paper

Speed Limiter Using Disturbance Observer

2021-04-06
2021-01-0102
This paper suggests disturbance observer which improves performance of speed limit assist control. The nonlinear disturbance observer was designed so that disturbance caused by parameter and load uncertainties is able to be estimated exponentially. With the contribution of the observer, feed-forward and integral controllers can be omitted while improving steady-state error elimination and overshoot reduction. The acceleration observer is also designed to reduce the effect of wheel slip and changing slope. The performance of the controllers has been verified not only on flat roads, but also on wave road and rapidly changing ramps.
Technical Paper

The Analysis of Relationship between Vehicle Drop & Dummy Injury

2016-04-05
2016-01-1539
Given the importance of vehicle safety, OEMs are focused on ensuring the safety of passengers during car accidents. Injury is related to the passenger’s kinematics and interaction with airbag, seatbelt, and vehicle drop. However, the correlation between vehicle drop (vehicle pitch) and passengers’ injury is the main issue recently being discussed. This paper presents the definition of vehicle drop and analyzes the relationship through a dynamic sled test. This study defines the relationship between individual vehicle systems (body, chassis, tire, etc.) and vehicle drop, and how to control the amount of vehicle drop to minimize the injury of passengers.
Technical Paper

The Effects of Various Design Factors for Invisible Passenger-side Airbag Door Opening

2002-03-04
2002-01-0184
Invisible Passenger-side Airbag (IPAB) door systems must be designed with a weakened area such that the airbag will break through the Instrument Panel (IP) in the intended manner, with no flying debris at any temperature. A predictive Finite Element Analysis (FEA) was carried out to calculate the effects of varying design factors (the length and thickness of kink-hinge, tear-line type and temperature) on the IPAB-door opening. The impact performance of plastic parts was considered, because the mechanical properties of thermoplastic materials are strongly dependent on strain rate.
Technical Paper

The Study of the Structure for the Head Protection on Front Pillar in Crash or Rollover of the Vehicle

2002-03-04
2002-01-0684
In order to meet FMVSS 201 (U) requirements, the upper vehicle interior structures with trim in a vehicle need to be properly designed to minimize injuries when head impacts these components. This paper presents a study of countermeasures in pillars using FEA approach by considering some design factors. Optimal designs are then selected for interior head impact protection based on CAE analysis using LS-DYNA non-linear finite element code.
Technical Paper

The development of in-vehicle unit of advanced vehicle information and communication system

2000-06-12
2000-05-0370
This paper presents an in-vehicle information system, AVICS in development. With AVICS, the driver could get the various information on traffic, news, weather, restaurants, and so on, which the AVICS information center provides via mobile telecommunication network. The driver requests the information to operator in center by voice with hands-free system or by handling the menu offered in the form of web-page. The in-vehicle unit for AVICS is designed to interface with wireless network with a built-in RF MODEM, to control NAVI system, and to display the information on the LCD monitor of AV system. The Internet browser is customized to parse specific HTML tags, application software is realized on 32-bit RISC processor. In this paper, we will overview the concept of AVICS and focus on development of in-vehicle unit of AVICS.
X