Refine Your Search

Topic

Author

Search Results

Technical Paper

1D Engine Simulation Approach for Optimizing Engine and Exhaust Aftertreatment Thermal Management for Passenger Car Diesel Engines by Means of Variable Valve Train (VVT) Applications

2018-04-03
2018-01-0163
Using a holistic 1D engine simulation approach for the modelling of full-transient engine operation, allows analyzing future engine concepts, including its exhaust gas aftertreatment technology, early in the development process. Thus, this approach enables the investigation of both important fields - the thermodynamic engine process and the aftertreatment system, together with their interaction in a single simulation environment. Regarding the aftertreatment system, the kinetic reaction behavior of state-of-the-art and advanced components, such as Diesel Oxidation Catalysts (DOC) or Selective Catalytic Reduction Soot Filters (SCRF), is being modelled. Furthermore, the authors present the use of the 1D engine and exhaust gas aftertreatment model on use cases of variable valve train (VVT) applications on passenger car (PC) diesel engines.
Journal Article

A Cycle-Based Multi-Zone Simulation Approach Including Cycle-to-Cycle Dynamics for the Development of a Controller for PCCI Combustion

2009-04-20
2009-01-0671
Subject of this work is a simulation model for PCCI combustion that can be used in closed-loop control development. A detailed multi-zone chemistry model for the high-pressure part of the engine cycle is extended by a mean value model accounting for the gas exchange losses. The resulting model is capable of describing PCCI combustion with stationary excactness. It is at the same time very economic with respect to computational costs. The model is further extended by identified system dynamics influencing the stationary inputs. For this, a Wiener model is set up that uses the stationary model as a nonlinear system representation. In this way, a dynamic nonlinear model for the representation of the controlled plant Diesel engine is created.
Technical Paper

A Data-driven Approach for Enhanced On-Board Fault Diagnosis to Support Euro 7 Standard Implementation

2024-04-09
2024-01-2872
The European Commission is going to publish the new Euro7 standard shortly, with the target of reducing the impact on pollutant emissions due to transportation systems. Besides forcing internal combustion engines to operate cleaner in a wider range of operating conditions, the incoming regulation will point out the role of On-Board Monitoring (OBM) as a key enabler to ensure limited emissions over the whole vehicle lifetime, necessarily taking into account the natural aging of involved systems and possible electronic/mechanical faults and malfunctions. In this scenario, this work aims to study the potential of data-driven approaches in detecting emission-relevant engine faults, supporting standard On-Board Diagnostics (OBD) in pinpointing faulty components, which is part of the main challenges introduced by Euro7 OBM requirements.
Technical Paper

A Numerical Investigation of Potential Ion Current Sensor Applications in Premixed Charge Compression Ignition Engine

2022-09-16
2022-24-0041
Simultaneous reduction of engine pollutants (e.g., CO, THC, NOx, and soot) is one of the main challenges in the development of new combustion systems. Low-temperature combustion (LTC) concepts in compression ignition (CI) engines like premixed charged compression ignition (PCCI) make use of pre-injections to create a partly homogenous mixture. In the PCCI combustion regime, a direct correlation between injection and pollutant formation is no longer present because of long ignition delay times. In LTC combustion systems, the in-cylinder pressure sensor is normally used to help the combustion control. However, to allow the control of PCCI engines, new sensor concepts are investigated to obtain additional information about the PCCI combustion for advanced controller structures. In LTC combustion systems like gasoline-controlled autoignition (GCAI) concepts, the application of ion current sensors enables additional monitoring of the combustion process with real-time capability.
Journal Article

A Sectoral Approach to Modelling Wall Heat Transfer in Exhaust Ports and Manifolds for Turbocharged Gasoline Engines

2016-04-05
2016-01-0202
A new approach is presented to modelling wall heat transfer in the exhaust port and manifold within 1D gas exchange simulation to ensure a precise calculation of thermal exhaust enthalpy. One of the principal characteristics of this approach is the partition of the exhaust process in a blow-down and a push-out phase. In addition to the split in two phases, the exhaust system is divided into several sections to consider changes in heat transfer characteristics downstream the exhaust valves. Principally, the convective heat transfer is described by the characteristic numbers of Nusselt, Reynolds and Prandtl. However, the phase individual correlation coefficients are derived from 3D CFD investigations of the flow in the exhaust system combined with Low-Re turbulence modelling. Furthermore, heat losses on the valve and the seat ring surfaces are considered by an empirical model approach.
Technical Paper

Accurate Mean Value Process Models for Model-Based Engine Control Concepts by Means of Hybrid Modeling

2019-04-02
2019-01-1178
Advanced powertrains for modern vehicles require the optimization of conventional combustion engines in combination with tailored electrification and vehicle connectivity strategies. The resulting systems and their control devices feature many degrees of freedom with a large number of available adjustment parameters. This obviously presents major challenges to the development of the corresponding powertrain control logics. Hence, the identification of an optimal system calibration is a non-trivial task. To address this situation, physics-based control approaches are evolving and successively replacing conventional map-based control strategies in order to handle more complex powertrain topologies. Physics-based control approaches enable a significant reduction in calibration effort, and also improve the control robustness.
Technical Paper

Advanced Functional Pulse Testing of a Two-Stage VCR-System

2019-04-02
2019-01-1195
Two-stage variable compression ratio (VCR) systems for spark ignited engines offer a CO2 reduction potential of approx. 5%. Due to their modularity, connecting rod based VCR-systems can be integrated into existing engine assembly systems, where engines can be built in parallel with or without such a system, depending on performance and market requirements. In order to comply with the new RDE emission standards with high specific power engine variants, VCR systems enable high load engine operation without fuel enrichment. The interactions between the hydraulic-, mechanical - and oil supply systems of a VCR-system with variable connecting rod length are complex and require a well-developed and adapted layout of all subsystems. This demands the use of tailored measurement and simulation tools during the development and application phases. In this context, Advanced Functional Pulse Testing enables single-parameter analyses of VCR con rods.
Journal Article

Analysis of Cyclic Variation Using Time-Resolved Tomographic Particle-Image Velocimetry

2020-09-15
2020-01-2021
To achieve the strict legislative restrictions for emissions from combustion engines, vast improvements in engine emissions and efficiency are required. Two major impacting factors for emissions and efficiency are the reliable generation of an effective mixture before ignition and a fast, stable combustion process. While the mixture of air and injected fuel is generated by highly three-dimensional, time-dependent flow phenomena during the intake and compression stroke, the turbulent flame propagation is directly affected by the turbulence level in the flow close to the advancing flame front. However, the flow field in the combustion chamber is highly turbulent and subject to cycle-to-cycle variations (CCV). To understand the fundamental mechanisms and interactions, 3D flow measurements with combined high spatial and temporal resolution are required.
Journal Article

Applying Physics-Informed Enhanced Super-Resolution Generative Adversarial Networks to Large-Eddy Simulations of ECN Spray C

2022-03-29
2022-01-0503
Large-eddy simulation (LES) is an important tool to understand and analyze sprays, such as those found in engines. Subfilter models are crucial for the accuracy of spray-LES, thereby signifying the importance of their development for predictive spray-LES. Recently, new subfilter models based on physics-informed generative adversarial networks (GANs) were developed, known as physics-informed enhanced super-resolution GANs (PIESRGANs). These models were successfully applied to the Spray A case defined by the Engine Combustion Network (ECN). This work presents technical details of this novel method, which are relevant for the modeling of spray combustion, and applies PIESRGANs to the ECN Spray C case. The results are validated against experimental data, and computational challenges and advantages are particularly emphasized compared to classical simulation approaches.
Technical Paper

Assessment of the Approximation Formula for the Calculation of Methane/Air Laminar Burning Velocities Used in Engine Combustion Models

2017-09-04
2017-24-0007
Especially for internal combustion engine simulations, various combustion models rely on the laminar burning velocity. With respect to computational time needed for CFD, the calculation of laminar burning velocities using a detailed chemical mechanism can be replaced by incorporation of approximation formulas, based on rate-ratio asymptotics. This study revisits an existing analytical approximation formula [1]. It investigates applicable temperature, pressure, and equivalence ratio ranges with special focus on engine combustion conditions. The fuel chosen here is methane and mixtures are composed of methane and air. The model performance to calculate the laminar burning velocity are compared with calculated laminar burning velocities using existing state of the art detailed chemical mechanisms, the GRI Mech 3.0 [2], the ITV RWTH [3], and the Aramco mechanism [4].
Technical Paper

Automation of Road Vehicles Using V2X: An Application to Intersection Automation

2017-03-28
2017-01-0078
Today, automated vehicles mostly rely on ego vehicle sensors such as cameras, radar or LiDAR sensors that are limited in their sensing capability and range. Vehicle-to-everything (V2X) communication has the potential to appropriately complement these sensors and even allow for a cooperative, proactive interaction of vehicles. As such, V2X communication might play a vital role on the way to smart and efficient traffic solutions. In the public funded research project UK Autodrive, we are currently investigating and experimentally evaluating V2X-based applications based on dedicated short range communication (DSRC). Moreover, the novel application intersection priority management (IPM) is part of the research project. IPM aims at automating intersections in such a way that vehicles can pass safely and even more efficiently without the use of traffic lights or signs.
Technical Paper

Borderline Design of Crankshafts Based on Hybrid Simulation Technology

2009-06-15
2009-01-1918
This paper introduces different modeling approaches of crankshafts, compares the refinement levels and discusses the difference between the results of the crankshaft durability calculation methodologies. A V6 crankshaft is considered for the comparison of the refinement levels depending on the deviation between the signals such as main bearing forces and deflection angle. Although a good correlation is observed between the results in low speed range, the deviation is evident through the mid to high speed ranges. The deviation amplitude differs depending on the signal being observed and model being used. An inline 4 crankshaft is considered for the comparison of the durability results. The analysis results show that the durability potential is underestimated with a classical crankshaft calculation approach which leads to a limitation of maximum speed of 5500 rpm.
Journal Article

CFD Simulation of Oil Jets for Piston Cooling Applications Comparing the Level Set and the Volume of Fluid Method

2019-04-02
2019-01-0155
A new CFD simulation model and methodology for oil jet piston cooling has been developed using the modern level set approach. In contrast to the widely used volume of fluid (VOF) method, the level set approach explicitly tracks the interface surface between oil and air, using an additional field equation. The method has been extensively tested on two- and three-dimensional examples using results from literature for comparison. Furthermore, several applications of oil jet piston cooling on Ford engines have been investigated and demonstrated. For example, three-dimensional simulations of piston cooling nozzle jets on a diesel engine have been calculated and compared to test-rig measurements. Laminar jets, as well as jets with droplets and fully atomized jets, have been simulated using realistic material properties, surface tension, and gravity.
Journal Article

Characterization of Hollow Cone Gas Jets in the Context of Direct Gas Injection in Internal Combustion Engines

2018-04-03
2018-01-0296
Direct injection (DI) compressed natural gas (CNG) engines are emerging as a promising technology for highly efficient and low-emission engines. However, the design of DI systems for compressible gas is challenging due to supersonic flows and the occurrence of shocks. An outwardly opening poppet-type valve design is widely used for DI-CNG. The formation of a hollow cone gas jet resulting from this configuration, its subsequent collapse, and mixing is challenging to characterize using experimental methods. Therefore, numerical simulations can be helpful to understand the process and later to develop models for engine simulations. In this article, the results of high-fidelity large-eddy simulation (LES) of a stand-alone injector are discussed to understand the evolution of the hollow cone gas jet better.
Technical Paper

Comparing Large Eddy Simulation of a Reacting Fuel Spray with Measured Quantitative Flame Parameters

2018-09-10
2018-01-1720
In order to reduce engine out CO2 emissions, it is a main subject to find new alternative fuels from renewable sources. For identifying the specification of an optimized fuel for engine combustion, it is essential to understand the details of combustion and pollutant formation. For obtaining a better understanding of the flame behavior, dynamic structure large eddy simulations are a method of choice. In the investigation presented in this paper, an n-heptane spray flame is simulated under engine relevant conditions starting at a pressure of 50 bar and a temperature of 800 K. Measurements are conducted at a high-pressure vessel with the same conditions. Liquid penetration length is measured with Mie-Scatterlight, gaseous penetration length with Shadowgraphy and lift-off length as well as ignition delay with OH*-Radiation. In addition to these global high-speed measurement techniques, detailed spectroscopic laser measurements are conducted at the n-heptane flame.
Technical Paper

Correlation-Based Transfer Path Analysis for Brake System-Induced Interfering Noise in the Vehicle Interior

2021-05-11
2021-01-5044
1. The present work introduces an approach for the analysis of the noise propagation behavior of mechatronic brake systems in modern passenger vehicles. While on the one hand, the number of features realized through the mechatronic brake system is strongly increasing; on the other hand, a continuous reduction of the overall vehicle interior noise level can be observed. This leads to an increase of interfering noise phenomena in the vehicle interior that customers might perceive as insufficient product quality. Therefore, noise elimination always plays an important role in vehicle development. The mechatronic brake system induces interfering noise that is transferred into the vehicle interior, differing from vehicle to vehicle and maneuver to maneuver. Supposedly, a wide frequency range, numerous components, and various branched transfer paths in the physical domains of airborne, structure-borne, and fluid-borne sound are involved in the noise propagation.
Journal Article

Crank-Angle Resolved Real-Time Engine Modelling: A Seamless Transfer from Concept Design to HiL Testing

2018-04-03
2018-01-1245
Virtual system integration and testing using hardware-in-the-loop (HiL) simulation enables front-loading of development tasks, provides a safer and reliable testing environment and reduces prototype hardware costs. One of the greatest challenges to overcome when performing HiL simulations is assuring a high model accuracy under stringent real-time requirements with acceptable development effort. This article represents a novel solution by deriving the plant model for HiL directly from the existing detailed models from the component layout phase using co-simulation methodology. It provides an effective and efficient model implementation and validation process followed by detailed quantitative analysis of the test results referred to the engine test bench measurements.
Technical Paper

Current and Torque Harmonics Analysis of Dual Three-Phase Permanent-Magnet Synchronous Machines with Arbitrary Phase Shift Based on Model-in-the-Loop

2023-04-11
2023-01-0527
Dual three-phase permanent magnet synchronous machines (DTP-PMSM) are becoming increasingly popular in automotive electric powertrains due to their reduced phase currents and fault tolerance. The unique advantages of specific phase shift angles (such as 0°, 30°, 60°, etc.) between dual three-phase windings have been extensively studied. In this paper, the current and torque harmonics induced by the inverter are analyzed and the corresponding harmonics suppression strategy are proposed for a DTP-PMSM with different phase shift angles. In addition, this paper analyzes the effect of the phase shift angle between the dual three-phase windings on the torque ripple and phase losses, and proposes a novel optimal phase shift angle 80°. First, a mathematical vector space decomposition (VSD) model for a DTP-PMSM with arbitrary phase shift angles is derived.
Technical Paper

Current and Torque Harmonics Analysis of Triple Three-Phase Permanent-Magnet Synchronous Machines with Arbitrary Phase Shift Based on Model-in-the-Loop

2024-07-02
2024-01-3025
Multiple three-phase machines have become popular in recent due to their reliability, especially in the ship and airplane propulsions. These systems benefit greatly from the robustness and efficiency provided by such machines. However, a notable challenge presented by these machines is the growth of harmonics with an increase in the number of phases, affecting control precision and inducing torque oscillations. The phase shift angles between winding sets are one of the most important causes of harmonics in the stator currents and machine torque. Traditional approaches in the study of triple-three-phase or nine-phase machines mostly focus on specific phase shift, lacking a comprehensive analysis across a range of phase shifts. This paper discusses the current and torque harmonics of triple-three-phase permanent magnet synchronous machines (PMSM) with different phase shifts. It aims to analyze and compare the impacts of different phase shifts on harmonic levels.
Technical Paper

Development of Phenomenological Models for Engine-Out Hydrocarbon Emissions from an SI DI Engine within a 0D Two-Zone Combustion Chamber Description

2021-09-05
2021-24-0008
The increasingly stringent limits on pollutant emissions from internal combustion engine-powered vehicles require the optimization of advanced combustion systems by means of virtual development and simulation tools. Among the gaseous emissions from spark-ignition engines, the unburned hydrocarbon (HC) emissions are the most challenging species to simulate because of the complexity of the multiple physical and chemical mechanisms that contribute to their emission. These mechanisms are mainly three-dimensional (3D) resulting from multi-phase physics - e.g., fuel injection, oil-film layer, etc. - and are difficult to predict even in complex 3D computational fluid-dynamic (CFD) simulations. Phenomenological models describing the relationships between the physical-chemical phenomena are of great interest for the modeling and simplification of such complex mechanisms.
X