Refine Your Search

Topic

Search Results

Training / Education

AS13100 Supplemental Quality Management System Requirements

Anytime
This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. This eLearning course teaches the requirements of AS13100, including the standard's harmonization of aerospace engine manufacturer requirements. Participants explore the flow to the engine manufacturers systems by regulators, customers, and industry. Suppliers learn how to improve overall product quality, compliance, and business performance. Course modules explore each section of the standard, supporting learners in the design, maintenance and assessment of their business processes.
Training / Education

AS13100 and RM13004 Design and Process Failure Mode and Effects Analysis and Control Plans

2024-07-03
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. In the Aerospace Industry there is a focus on Defect Prevention to ensure that quality goals are met. Failure Mode and Effects Analysis (PFMEA) and Control Plan activities are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Design Failure Mode and Effects Analysis (DFMEA), Process Flow Diagrams, Process Failure Mode and Effects Analysis (PFMEA) and Control Plans as described in AS13100 and RM13004.
Training / Education

Adhesives Bundle

Anytime
Manufacturers increasingly rely on adhesives to assemble a variety of products, such as cars, computers, furniture, and toys. An adhesive is a substance used to join two or more materials. Adhesive bonding is the process of placing an adhesive between two surfaces, or substrates, and allowing it to harden, or cure. Structural adhesives are most commonly used in adhesive bonding, since they can easily withstand heavy loads. Epoxies, anaerobics, acrylics, silicones, urethanes, and cyanoacrylates are commonly used structural adhesives. These courses explain the fundamental concepts of adhesive bonding as they apply to product assembly.
Training / Education

DFMEA Overview and Application

During this DFMEA Overview and Application course, participants will be introduced to important FMEA concepts, the basic theory behind the concepts, then discuss how these concepts can be applied to the customer's design FMEA activities. Participant activities include: reading assignments, group discussions, exercises, building Block Diagrams as a group, and beginning a DFMEA on a customer’s product.
Training / Education

DFMEA Overview, Application and Facilitation

This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. This course serves a dual purpose: it delves into fundamental DFMEA principles and their practical applications while also offering guidance on leading DFMEA teams. Participants will be introduced to crucial FMEA concepts, along with the theoretical foundations before exploring how to implement these concepts in their DFMEA endeavors. Often, the FMEA process can become a mere replication of past efforts, which poses risks for both organizations developing the products under scrutiny and the end-users.
Training / Education

Design Verification Plan & Report (DVP&R) - Overview and Application

This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. In this one-day course on Design Verification Plan and Report Overview and Application, participants will be introduced to important concepts, the basic theory behind the concepts, and discuss how these concepts can be applied to the client's design reliability activities. Participant involvement will be maximized to demonstrate and reinforce the concepts through reading assignments, group discussions, and exercises where students will begin a DVP&R on a client product.
Training / Education

Design and Process Failure Modes and Effects Analysis (FMEA)

This course covers the five types of FMEAs with emphasis on constructing  Design and Process FMEAs. Each column of the FMEA document will be clearly explained using an actual FMEA example.  The course covers various methods for identifying failure modes, effects and causes with special attention given to severity, occurrence, and detection tables and how to develop effective recommended actions strategies.  Throughout the class, participants will be involved in exercises/actual projects that demonstrate and incorporate direct application of learned principles.
Training / Education

FEA Beyond Basics: Nonlinear Analysis Web Course RePlay

Anytime
Finite Element Analysis (FEA) has been an indispensable tool for design simulation for several decades but this wide spread use has been limited to simple types of analyses. Relatively recently, more advanced analyses have given easy-to-use interfaces enabling design engineers to simulate problems formerly reserved for analysts. FEA Beyond Basics targets the FEA users who wish to explore those advanced analysis capabilities. It will demonstrate how to move past the ubiquitous linear structural analysis and solve structural nonlinear problems characterized by nonlinear material, large displacements, buckling or nonlinear connectors.
Training / Education

FEA Beyond Basics: Thermal Analysis Web Course RePlay

Anytime
Finite Element Analysis (FEA) is a powerful and well recognized tool used in the analysis of heat transfer problems. However, FEA can only analyze solid bodies and, by necessity thermal analysis with FEA is limited to conductive heat transfer. The other two types of heat transfer: convection and radiation must by approximated by boundary conditions. Modeling all three mechanisms of heat transfer without arbitrary assumption requires a combined use of FEA and Computational Fluid Dynamics (CFD).
Training / Education

Failure Mode and Effects Analysis (FMEA)

2024-07-02
This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. This courser will introduce the latest version (2019) of Failure Mode and Effects Analysis (FMEA) Handbook with a focus on DFMEA and PFMEA building. Each column of the FMEA document will also be explained in detail with FMEA examples. The course also includes an introduction to the logic for identifying technical risks and thinking tools for risk mitigation.
Training / Education

Failure Mode and Effects Analysis (FMEA) for Robust Design Case Study

Anytime
FMEA is an essential part of any product design or redesign. An FMEA requires that a dedicated team take a step-by-step, proactive approach to identifying and analyzing all potential failure modes in a product or service. Completing an FMEA can dramatically improve product performance and reduce manufacturing issues at the component, system, and processing level.  This interactive FMEA case study gives you an opportunity to work through the process as an engineer develops an FMEA.
Training / Education

Ferrous Metals Bundle: Steel and Cast Iron

Anytime
Ferrous metals contain iron and are prized for their tensile strength and durability. Most are magnetic and contain a high carbon content which generally makes them, with the exception of wrought iron and stainless steel, vulnerable to rust. The following seven eLearning courses are included in the Ferrous Materials Bundle: Steel and Cast Iron. Each course is approximately one-hour in duration. Modules include: Introduction to Physical Properties, Introduction to Mechanical Properties, Introduction to Metals, Hardness Testing, Ferrous Metals, Classification of Steel, Essentials of Heat Treatment of Steel.
Training / Education

Finite Element Analysis (FEA) for Design Engineers

Anytime
Finite Element Analysis (FEA) is a computer-aided engineering (CAE) tool used to analyze how a design reacts under real-world conditions. Useful in structural, vibration, and thermal analysis, FEA has been widely implemented by automotive companies. It's used by design engineers as a design tool during the product development process because it allows them to analyze their own designs while they are still in the form of easily modifiable CAD models, providing quick turnaround times and ensuring prompt implementation of analysis results in the design process.
Training / Education

Fluids for Aerospace Hydraulic Systems

This four-hour short course provides an introduction to fluids for aerospace hydraulic systems. Topics covered include an introduction to basics fluid properties, rheology, tribology, and fluid product development. In addition, the history and performance of different classes of fluids are discussed in detail, and specific failure modes such as erosion and sludge formation will be described. Along with an introduction to fluid degradation, information on used oil analysis test methods and interpretation will be provided.
Training / Education

Foundations for Implementing Root Cause Analysis

Anytime
Effective problem solving isn't just a quality function, and it's not just for operations or engineering. Effective problem solving is a valuable skill set needed throughout an organization. By working through a plausible scenario, you'll assess your own problem-solving skills and experience how tempting it is to jump to solutions or try to fix the problem without investigating and understanding all the underlying causes. Though sometimes effective in the short-term, jumping to solutions can be unreliable, wasting time, money, and effort.
Training / Education

Fundamentals of Fatigue Analysis

Fatigue is a structural failure mode that must be recognized and understood to develop products that meet life cycle durability requirements. In the age of lightweighting, fatigue strength is an important vehicle design requirement as engineers struggle to meet stringent weight constraints without adversely impacting durability. This technical concept course introduces the fatigue failure mode and analysis methods. It explains the physics of material fatigue, including damage accumulation that may progress to product failure over time, and it provides the needed foundation to develop effective fatigue prediction capabilities.
Training / Education

Fundamentals of Threaded Fasteners

Fastener experts believe that upwards of 95% of all fastener failures are the result of either the wrong fastener for the job or improper installation. Improper installation or incorrect fastener selection can result in catastrophic loss or damage. Learn how to avoid issues by getting the answers in this course.
Training / Education

Hardness Testing

Anytime
This eLearning course focuses on Rockwell and Brinell hardness testing and Vickers and Knoop microhardness testing. Participants will learn about how the tests are performed, test sample requirements, test parameter selection, and testing requirements. The course can be completed in 30 minutes.
Training / Education

High Temperature Materials Bundle

Anytime
Metals and alloys have different melting ranges depending on their chemistry. High temperature metals are much harder at room temperature, have exceptionally high melting points (usually above 2000 degree Celsius), and are resistant to wear, corrosion and deformation. The following five eLearning courses are included in the High Temperature Materials bundle.  Each course is approximately one-hour in duration. See Topics/Outline for additional details.
Training / Education

Introduction to Design Review Based on Failure Modes (DRBFM) Web Course RePlay

Anytime
This course will explain all phases of the DRBFM methodology and provide details on how to accomplish the specific steps. With the Design Review Based on Failure Modes (DRBFM) and Design Review Based on Test Results (DRBTR) Process Guidebook that is bundled with the course, the instructor will provide specific information on each step. Formats, examples, notes and homework slides will be used to illustrate the defined steps of the new SAE J2886 DRBFM Recommended Practice. Similarities in content between DRBFM and FMEA will be discussed, however the focus will be on conducting DRBFM methodology.
X