Refine Your Search

Topic

Search Results

Technical Paper

A Method for the Characterization of Off-Road Terrain Severity

2006-10-31
2006-01-3498
Highway and roadway surface measurement is a practice that has been ongoing for decades now. This sort of measurement is intended to ensure a safe level of road perturbances. The measurement may be conducted by a slow moving apparatus directly measuring the elevation of the road, at varying distance intervals, to obtain a road profile, with varying degrees of resolution. An alternate means is to measure the surface roughness at highway speeds using accelerometers coupled with high speed distance measurements, such as laser sensors. Vehicles out rigged with such a system are termed inertial profilers. This type of inertial measurement provides a sort of filtered roadway profile. Much research has been conducted on the analysis of highway roughness, and the associated metrics involved. In many instances, it is desirable to maintain an off-road course such that the course will provide sufficient challenges to a vehicle during durability testing.
Technical Paper

AFR Control on a Single Cylinder Engine Using the Ionization Current

1998-02-23
980203
Over the years numerous researchers have suggested that the ionization current signal carries within it combustion relevant information. The possibility of using this signal for diagnostics and control provides motivation for continued research in this area. To be able to use the ion current signal for feedback control a reliable estimate of some combustion related parameter is necessary and therein lies the difficulty. Given the nature of the ion current signal this is not a trivial task. Fei An et al. [1] employed PCA for feature extraction and then used these feature vectors to design a neural network based classifier for the estimation of air to fuel ratio (AFR). Although the classifier predicted AFR with sufficient reliability, a major draw back was that the ion current signals used for prediction were averaged signals thus precluding a cycle to cycle estimate of AFR.
Technical Paper

Air-Fuel Ratio Control for a High Performance Engine using Throttle Angle Information

1999-03-01
1999-01-1169
This paper presents the development of a model-based air/fuel ratio controller for a high performance engine that uses, in addition to other usual signals, the throttle angle to enable predictive air mass flow rate estimation. The objective of the paper is to evaluate the possibility to achieve a finer air/fuel ratio control during transients that involve sudden variations in the physical conditions inside the intake manifold, due, for example, to fast throttle opening or closing actions. The air mass flow rate toward the engine cylinders undertakes strong variation in such transients, and its correct estimation becomes critical mainly because of the time lag between its evaluation and the instant when the air actually enters the cylinders.
Technical Paper

An 1800 HP, Street Legal Corvette: An Introduction to the AWD Electrically-Variable Transmission

2005-04-11
2005-01-1169
New vehicle technologies open up a vast number of new options for the designer, removing traditional constraints. Though hybrid powertrains have thus far been implemented chiefly to improve the fuel economy of already economical passenger cars, hybrid technology may have even more to offer in a performance vehicle. In the year when the C6 Corvette and two large GM hybrid projects have been unveiled, a new case study looks to combine these ideas and explore the performance limits for the next generation high performance sports car. Through an innovative transmission concept and thoughtful packaging, the next generation Corvette could enhance a 600 HP spark-ignited V-8 (supercharged LS2) with 1200 HP from electric machines, and still meet current emission standards. Such immense tractive power, however, would be useless without an intelligent means of delivering this power to the wheels.
Technical Paper

An Improved Design of a Vehicle Based Off-Road Terrain Profile Measurement System

2008-10-07
2008-01-2655
This paper discusses an improved design of a vehicle-based mobile off-road terrain profile measurement system. The proposed system includes an apparatus of sensors and on-board data acquisition hardware, equipped on a platform vehicle used to measure and record the relevant data while the vehicle travels through the off-road or terrain surface to be surveyed. A unique post-processing algorithm is then used to derive the elevation profile based on the collected data. The derived elevation profile data could be used to characterize the roughness of an off-road testing course or perform a general geographical survey or mapping. The major technical issue addressed in this system is to eliminate the effect of platform vehicle vibration on sensor measurement which if left unaddressed will result in large measurement error due to high amplitude pitch and roll movements of the platform vehicle.
Technical Paper

Applications of Precise Crankshaft Position Measurements for Engine Testing, Control and Diagnosis

1989-02-01
890885
This paper presents several applications of a precise, moderate sampling rate measurement of the crankshaft angular position of a reciprocating IC engine. It is shown that the measurement can be made with a relatively inexpensive noncontacting sensor. Given sufficient precision and sampling rate, the various applications include: crankshaft reference position measurements for ignition timing (gasoline fueled engines), or injector timing (for electronically controlled diesel engines); crankshaft angular speed and acceleration measurements for estimating instantaneous indicated torque, and for diagnosing engine malfunctions. The torque estimate is potentially useful for engine control, to improve engine performance with respect to reducing cycle to cycle and cylinder to cylinder nonuniformity, and with respect to fuel economy.
Technical Paper

Cleaner Diesel Using Model-Based Design and Advanced Aftertreatment in a Student Competition Vehicle

2008-04-14
2008-01-0868
Traditionally in the United States, Diesel engines have negative connotations, primarily due to their association with heavy duty trucks, which are wrongly characterized as “dirty.” Diesel engines are more energy efficient and produce less carbon dioxide than gasoline engines, but their particulate and NOx emissions are more difficult to reduce than spark ignition engines. To tackle this problem, a number of after-treatment technologies are available, such as Diesel Lean NOx Traps (LNTs)), which reduces oxides of nitrogen, and the Diesel particulate filter (DPF), which reduces particulate matter. Sophisticated control techniques are at the heart of these technologies, thus making Diesel engines run cleaner. Another potentially unattractive aspect of Diesel engines is noise.
Technical Paper

Combustion Diagnostics in Methane-Fueled SI Engines Using the Spark Plug as an Ionization Probe

1997-02-24
970033
The process of incorporating the spark plug as a combustion probe, to perform misfire and knock detection, air to fuel ratio and spark timing control has been the subject of research for some time now. [3], [4]. The feasibility of the approach however depends on being able to correlate some characteristic of the ion current signal to the in cylinder combustion process. Shimaski et al. [3] and Miyata et al. [4] suggest such a relationship. The objective of this research has been to extract combustion information from the measured ion current flowing between spark plug electrodes by using various advanced signal processing methods, and to develop a methodology that will permit combustion diagnostics and possibly control based on these measurements. Tests were carried out on a single-cylinder, methane-fueled CFR engine.
Technical Paper

Crankshaft Position Measurement with Applications to Ignition Timing, Diagnostics and Performance Measurement

1987-10-01
871914
This paper introduces a high accuracy method of measuring crankshaft angular position of an I-C engine. The method uses a sensor which couples magnetically to the starter ring gear. There are many automotive applications of this measurement of crankshaft angular position including ignition timing reference, engine performance measurement and certain diagnostic functions. The present paper disusses only the ignition timing application. Engine performance measurements are reported in refs. (1,2,3). The diagnostic application is discussed in refs. (4-5). The passage of a starter ring gear tooth past the sensor axis causes a pulse to be generated in the sensor output. The waveform of this sensor voltage is independent of engine angular speed (including zero speed). However, this waveform is a function of gear tooth profile and is consequently influenced by gear wear. The present method uses a finite state machine to process the sensor output signal.
Technical Paper

Engine and Load Torque Estimation with Application to Electronic Throttle Control

1998-02-23
980795
Electronic throttle control is increasingly being considered as a viable alternative to conventional air management systems in modern spark-ignition engines. In such a scheme, driver throttle commands are interpreted by the powertrain control module together with many other inputs; rather than directly commanding throttle position, the driver is now simply requesting torque - a request that needs to be appropriately interpreted by the control module. Engine management under these conditions will require optimal control of the engine torque required by the various vehicle subsystems, ranging from HVAC, to electrical and hydraulic accessories, to the vehicle itself. In this context, the real-time estimation of engine and load torque can play a very important role, especially if this estimation can be performed using the same signals already available to the powertrain control module.
Technical Paper

Failure Detection Algorithms Applied to Control System Design for Improved Diagnostics and Reliability

1988-02-01
880726
This paper presents the application of detection filters to the diagnosis of sensor and actuator failures in automotive control systems. The detection filter is the embodiment of a model-based failure detection and isolation (FDI) methodology, which utilizes analytical redundancy within a dynamical system (e.g., engine/controller) to isolate the cause and location of abnormal behavior (i.e., failures). The FDI methodology has been used, among other applications, in the aerospace industry for fault diagnosis of inertial navigation systems and flight controllers. This paper presents the philosophy and essential features of FDI theory, and describes the practical application of the method to the diagnosis of faults in the throttle position sensor in an electronically controlled IC engine. The paper also discusses the incorporation of FDI systems in the design process of a control strategy, with the aim of increasing reliability by embedding diagnostic features within the control strategy.
Technical Paper

IC Engine Fuel System Diagnostics Using Observer with Binary Sensor Measurement

1997-02-24
970031
In this paper, we propose an IC engine fuel system diagnostic algorithm based on a discrete-event nonlinear observer using the production oxygen sensor. A mean value engine model is used to describe the engine dynamics. A procedure for designing the discrete event based observer is presented and applied to estimate important engine variables using the measured binary oxygen sensor output. The estimated variables are then used to perform diagnostics of the fuel system of the IC engine. Experimental results on a multi-cylinder production engine are presented to demonstrate the effectiveness of the proposed method.
Technical Paper

Improved Knock Detection by Advanced Signal Processing

1995-02-01
950845
Engine knock has been recognized as a major problem limiting the development of fuel efficient spark-ignition engines. Detection methods employed in current knock control systems for spark ignition engines use a measurement of engine block vibration tuned to one or more resonance frequencies to extract knock-related information from the engine structural vibration. A major problem in the detection of knock (especially at higher engine speed) in commercial engines is the isolation of the desired signal from the contributions of the components other than those associated with the phenomenon under investigation. This is generally referred to as background noise. It is known that the engine knock resonance frequencies vary due to changes in combustion chamber volume and temperature during the expansion phase. Therefore, we propose an improved knock detection method using joint time-frequency analysis of engine block vibration and pressure signals.
Technical Paper

Methods for Internal Combustion Engine Feedback Control During Cold-Start

1995-02-01
950842
Legislation pertaining to automobile emissions has caused an increased focus on the cold-start performance of internal combustion engines. Of particular concern is the period of time before all available sensors become active. Present engine control strategies must rely on methods other than feedback control while these sensors are not active. Without feedback control during this critical period, engine emissions performance is not optimized. These conditions cause difficulty in performing comprehensive cold-start experiments. For these reasons, we have developed several methods for feedback control during cold-start to aid in laboratory investigations of engine emissions phenomena.
Technical Paper

Model Based Fault Diagnosis for Engine under Speed Control

2007-04-16
2007-01-0775
An appropriate fault diagnosis and Isolation (FDI) strategy is very useful to prevent system failure. In this paper, a model-based fault diagnosis strategy is developed for an internal combustion engine (ICE) under speed control. Engine throttle fault and the manifold pressure sensor fault are detected and isolated. A nonlinear observer based residual generation approach is proposed. Manifold pressure and throttle are observed. Fault codes are designed with redundancy to prevent bit error. Performance of fault diagnosis strategy has been evaluated with simulations.
Technical Paper

Model-Based Component Fault Detection and Isolation in the Air-Intake System of an SI Engine Using the Statistical Local Approach

2003-03-03
2003-01-1057
The stochastic Fault Detection and Isolation (FDI) algorithm, known as the statistical local approach, is applied in a model-based framework to the diagnosis of component faults in the air-intake system of an automotive engine. The FDI scheme is first presented as a general methodology that permits the detection of faults in complex nonlinear systems without the need for building inverse models or numerous observers. Although sensor and actuator faults can be detected by this FDI methodology, component faults are generally more difficult to diagnose. Hence, this paper focuses on the detection and isolation of component faults for which the local approach is especially suitable. The challenge is to provide robust on-board diagnostics regardless of the inherent nonlinearities in a system and the random noise present.
Technical Paper

Model-Based Fault Diagnosis of Spark-Ignition Direct-Injection Engine Using Nonlinear Estimations

2005-04-11
2005-01-0071
In this paper, the detection and isolation of actuator faults (both measured and commanded) occurring in the engine breathing and the fueling systems of a spark-ignition direct-injection (SIDI) engine are described. The breathing system in an SIDI engine usually consists of a fresh air induction path via an electronically controlled throttle (ECT) and an exhaust gas recirculation (EGR) path via an EGR valve. They are dynamically coupled through the intake manifold to form a gas mixture, which eventually enters the engine cylinders for a subsequent combustion process. Meanwhile, the fueling system is equipped with a high-pressure common-rail injection for a precise control of the fuel quantity directly injected into the engine cylinders. Since the coupled system is highly nonlinear in nature, the fault diagnosis will be performed by generating residuals based on multiple nonlinear observers.
Technical Paper

Onboard Diagnosis of Engine Misfires

1990-09-01
901768
The integrity of the exhaust emission system in a passenger vehicle can best be maintained by monitoring its performance continuously on board the vehicle. It is with the intent of monitoring emission system performance that the California Air Resources Board has proposed regulations which will require vehicles to be equipped with on-board monitoring systems. These proposed regulations are known as OBDII and will probably be followed by similar Federal EPA regulations.This paper discusses a method of monitoring engine misfire as part of the OBDII requirements for passenger vehicle on-board diagnostics. The method is relatively inexpensive in that it uses an existing sensor for measuring instantaneous crankshaft angular position, and utilizes electronic signal processing which can be implemented in relatively inexpensive custom integrated circuits.
Technical Paper

Performance of a Ceramic CO Sensor in the Automotive Exhaust System

1995-02-01
950478
A prototype CO sensor based on anatase TiO2 was fabricated and tested in a Ford V6 engine. Fuel combustion was programmed to be near stoichiometric conditions, and emissions were monitored with an FT-IR analytical instrument. The sensor, positioned near the oxygen sensor in the exhaust manifold, was successfully tested for 50 cycles of revving and idling, and was observed to respond quickly and reproducibly. The sensor response was correlated to the CO concentration at specific engine temperatures and was found to vary systematically with increasing concentrations. This sensor has promising potentials to monitor the efficiency of the catalytic converter.
Technical Paper

Real Time Detection Filters for Onboard Diagnosis of Incipient Failures

1989-02-01
890763
This paper presents the real time implementation of detection filters for the diagnosis of incipient failures in electronically controlled internal combustion (IC) engines. The detection filters are implemented in a production vehicle. Recent results [1] have demonstrated the feasibility of a model-based failure detection and isolation (FDI) methodology for detecting partially failed components in electronically controlled vehicle subsystems. The present paper describes the real time application of the FDI concept to the detection of faults in sensors associated with the engine/controller In a detection filter, the performance of the engine/controller system is continuously compared to a prediction based on sensor measurements and an analytical model (typically a control model) of the system. Any discrepancy between actual and predicted performance is analyzed to identify the unique failure signatures related to specific system components.
X