Refine Your Search

Topic

Author

Search Results

Technical Paper

Enhanced Safety of Heavy-Duty Vehicles on Highways through Automatic Speed Enforcement – A Simulation Study

2024-04-09
2024-01-1964
Highway safety remains a significant concern, especially in mixed traffic scenarios involving heavy-duty vehicles (HDV) and smaller passenger cars. The vulnerability of HDVs following closely behind smaller cars is evident in incidents involving the lead vehicle, potentially leading to catastrophic rear-end collisions. This paper explores how automatic speed enforcement systems, using speed cameras, can mitigate risks for HDVs in such critical situations. While historical crash data consistently demonstrates the reduction of accidents near speed cameras, this paper goes beyond the conventional notion of crash occurrence reduction. Instead, it investigates the profound impact of driver behavior changes within desired travel speed distribution, especially around speed cameras, and their contribution to the safety of trailing vehicles, with a specific focus on heavy-duty trucks in accident-prone scenarios.
Journal Article

Identifying Pedal Misapplication Behavior Using Event Data Recorders

2022-03-29
2022-01-0817
Pedal misapplication (PM) crashes, i.e., crashes caused by a driver pressing one pedal while intending to press another pedal, have historically been identified by searching unstructured crash narratives for keywords and verified via labor-intensive manual inspection. This study proposes an alternative method to identify PM crashes using event data recorders (EDRs). Since drivers in emergency braking situations are motivated to hit the brake hard, it follows that drivers in emergency braking situations that commit a PM would likewise hit the accelerator hard, likely harder than accelerator pedal application during normal driving. Thus, the time-series accelerator pedal position and the derived accelerator pedal application rate were used to isolate accelerator misapplications. Additional strategic filters were applied based on characteristics observed from previous PM analyses to reduce false positive PM identifications.
Technical Paper

Estimating the Real-World Benefits of Lane Departure Warning and Lane Keeping Assist

2022-03-29
2022-01-0816
Four crash modes are overrepresented in traffic fatalities: run-off-road crashes, non-tracking run-off-road crashes, head-on crashes, and pedestrian crashes. Two advanced driver assist systems developed to help prevent tracking run-off-road crashes and head-on crashes are lane departure warning (LDW) and lane keeping assist (LKA). LDW acts to warn the driver when they are encroaching the lane boundary, whereas LKA performs automatic steering to prevent the vehicle from departing the lane. The objective of this research was to use real-world crash data to estimate current LDW and LKA system effectiveness in reducing run-off-road crashes and cross-centerline head-on crashes. All passenger vehicles that experienced a lane departure from 2017 to 2019 in the Crash Investigation Sampling System (CISS) were analyzed.
Technical Paper

Effect of Seat Back Restriction on Head, Neck and Torso Responses of Front Seat Occupants When Subjected to a Moderate Speed Rear-Impact

2021-04-06
2021-01-0920
During high-speed rear impacts with delta-V > 25 km/h, the front seats may rotate rearward due to occupant and seat momentum change leading to possibly large seat deflection. One possible way of limiting this may be by introducing a structure that would restrict large rotations or deformations, however, such a structure would change the front seat occupant kinematics and kinetics. The goal of this study was to understand the influence of seat back restriction on head, neck and torso responses of front seat occupants when subjected to a moderate speed rear-impact. This was done by simulating a rear impact scenario with a delta-V of 37.4 km/h using LS-Dyna, with the GHBMC M50 occupant model and a manufacturer provided seat model. The study included two parts, the first part was to identify worst case scenarios using the simplified GHBMC M50-OS, and the second part was to further investigate the identified scenarios using the detailed GHBMC M50-O.
Technical Paper

Infrastructure Camera Video Data Processing of Traffic at Roundabouts

2021-04-06
2021-01-0165
Roundabout is a unique approach of managing traffic at intersections because it relies on driver’s instincts of safety. Roundabouts are considered safer than other ways of intersection traffic management due to low speed limits, smoother merging, and reduced fatal accidents. Despite their benefits and increasing usage, there is lack of clear understanding of the roundabouts, particularly due to scarcity of data and simulation models and the complexity of the structure. Real-time and offline traffic data recorded at a roundabout provides a basis for 1) identification of the safety issues, 2) understanding unexpected and risky driver behavior, 3) proposing potential mobility solutions, and 4) developing simulation models. The processed data may be used in controlling metered roundabouts, communicating with connected and automated vehicles (CAVs) etc. In this paper an approach to obtain useful traffic information from video feed data at a roundabout is presented.
Technical Paper

Driving Automation System Test Scenario Development Process Creation and Software-in-the-Loop Implementation

2021-04-06
2021-01-0062
Automated driving systems (ADS) are one of the key modern technologies that are changing the way we perceive mobility and transportation. In addition to providing significant access to mobility, they can also be useful in decreasing the number of road accidents. For these benefits to be realized, candidate ADS need to be proven as safe, robust, and reliable; both by design and in the performance of navigating their operational design domain (ODD). This paper proposes a multi-pronged approach to evaluate the safety performance of a hypothetical candidate system. Safety performance is assessed through using a set of test cases/scenarios that provide substantial coverage of those potentially encountered in an ODD. This systematic process is used to create a library of scenarios, specific to a defined domain. Beginning with a system-specific ODD definition, a set of core competencies are identified.
Technical Paper

Investigating Combined Thoracic Loading Using the Elderly Female Dummy (EFD)

2020-03-31
2019-22-0017
The Elderly Female Dummy (EFD) is an omni-directional ATD developed to represent a vulnerable population. The EFD it is able to be 3D printed and quickly altered to meet design requirements. A recent side impact sled test series suggested that small, elderly females may be at risk of thoracic injuries in side impact crashes due to combined loading from the belt pre-tensioner and side airbag. The EFD was altered to add four IR-TRACCs to the thoracic region to allow both x-axis and y-axis displacement to be evaluated in a similar test. While the IR-TRACCs did record the displacement due to combined loading, the rate of displacement and timing of the peak displacements did not match external chestband outputs. The next step for the EFD is to revise the locations of IRTRACCs in the thorax and begin component testing in lateral and frontal directions to improve thoracic biofidelity.
Technical Paper

Posterior Cruciate Ligament Response to Proximal Tibia Impact

2019-04-02
2019-01-1221
Posterior cruciate ligament (PCL) injuries, although rarely life threatening, affect the quality of life of the person who sustains the injury. The PCL is the primary restraint to posterior tibial translation and can be injured when the tibia moves posteriorly relative to the femur. This type of injury is common in frontal crashes where the tibia may impact the dashboard or steering column. To quantify what happens during dynamic loading of the tibial plateau, isolated cadaveric lower limbs (n = 14) were impacted at dynamic rates with a linear pneumatic ram. During the testing, a static load was applied to the quadriceps tendon to simulate active musculature. Forces as well as the stretch of the PCL were measured. The most common injuries were tibia fractures and PCL tears. The stiffness for the tests at impact velocities of 1.4 and 2.9 m/s were on average 120 N/mm and 141N/mm, respectively. A trend towards increasing femur force with increasing velocity was found.
Journal Article

Long-Term Evolution of Straight Crossing Path Crash Occurrence in the U.S. Fleet: The Potential of Intersection Active Safety Systems

2019-04-02
2019-01-1023
Intersection collisions currently account for approximately one-fifth of all crashes and one-sixth of all fatal crashes in the United States. One promising method of mitigating these crashes and fatalities is to develop and install Intersection Advanced Driver Assistance Systems (I-ADAS) on vehicles. When an intersection crash is imminent, the I-ADAS system can either warn the driver or apply automated braking. The potential safety benefit of I-ADAS has been previously examined based on real-world cases drawn from the National Motor Vehicle Crash Causation Survey (NMVCCS). However, these studies made the idealized assumption of full installation in all vehicles of a future fleet. The objective of this work was to predict the reduction in Straight Crossing Path (SCP) crashes due to I-ADAS systems in the United States over time. The proportion of new vehicles with I-ADAS was modeled using Highway Loss Data Institute (HLDI) fleet penetration predictions.
Technical Paper

Has Electronic Stability Control Reduced Rollover Crashes?

2019-04-02
2019-01-1022
Vehicle rollovers are one of the more severe crash modes in the US - accounting for 32% of all passenger vehicle occupant fatalities annually. One design enhancement to help prevent rollovers is Electronic Stability Control (ESC) which can reduce loss of control and thus has great promise to enhance vehicle safety. The objectives of this research were (1) to estimate the effectiveness of ESC in reducing the number of rollover crashes and (2) to identify cases in which ESC did not prevent the rollover to potentially advance additional ESC development. All passenger vehicles and light trucks and vans that experienced a rollover from 2006 to 2015 in the National Automotive Sampling System Crashworthiness Database System (NASS/CDS) were analyzed. Each rollover was assigned a crash scenario based on the crash type, pre-crash maneuver, and pre-crash events.
Technical Paper

Preliminary Estimates of Near Side Crash Injury Risk in Best Performing Passenger Vehicles

2018-04-03
2018-01-0548
The goal of this paper is to estimate near-side injury risk in vehicles with the best side impact performance in the U.S. New Car Assessment Program (NCAP). The longer-term goal is to predict the incidence of crashes and injury outcomes in the U.S. in a future fleet of the 2025-time frame after current active and passive safety countermeasures are fully implemented. Our assumption was that, by 2025, all new vehicles will have side impact passive safety performance equivalent to current U.S. NCAP five star ratings. The analysis was based on real-world crashes extracted from case years 2010-2015 in the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) in which front-row occupants of late-model vehicles (Model Year 2011+) were exposed to a near-side crash.
Technical Paper

Estimating Benefits of LDW Systems Applied to Cross-Centerline Crashes

2018-04-03
2018-01-0512
Objective: Opposite-direction crashes can be extremely severe because opposing vehicles often have high relative speeds. The most common opposite direction crash scenario occurs when a driver departs their lane driving over the centerline and impacts a vehicle traveling in the opposite direction. This cross-centerline crash mode accounts for only 4% of all non-junction non-interchange crashes but 25% of serious injury crashes of the same type. One potential solution to this problem is the Lane Departure Warning (LDW) system which can monitor the position of the vehicle and provide a warning to the driver if they detect the vehicle is moving out of the lane. The objective of this study was to determine the potential benefits of deploying LDW systems fleet-wide for avoidance of cross-centerline crashes. Methods: In order to estimate the potential benefits of LDW for reduction of cross-centerline crashes, a comprehensive crash simulation model was developed.
Technical Paper

Methodology for Estimating the Benefits of Lane Departure Warnings using Event Data Recorders

2018-04-03
2018-01-0509
Road departures are one of the most deadly crash modes, accounting for nearly one third of all crash fatalities in the US. Lane departure warning (LDW) systems can warn the driver of the departure and lane departure prevention (LDP) systems can steer the vehicle back into the lane. One purpose of these systems is to reduce the quantity of road departure crashes. This paper presents a method to predict the maximum effectiveness of these systems. Thirty-nine (39) real world crashes from the National Automotive Sampling System (NASS) Crashworthiness Data System (CDS) database were reconstructed using pre-crash velocities downloaded for each case from the vehicle event data recorder (EDR). The pre-crash velocities were mapped onto the vehicle crash trajectory. The simulations assumed a warning was delivered when the lead tire crossed the lane line. Each case was simulated twice with driver reaction times of 0.38 s and 1.36 s after which time the driver began steering back toward the road.
Technical Paper

Biomechanical Responses of PMHS Subjected to Abdominal Seatbelt Loading

2016-11-07
2016-22-0004
Past studies have found that a pressure based injury risk function was the best predictor of liver injuries due to blunt impacts. In an effort to expand upon these findings, this study investigated the biomechanical responses of the abdomen of post mortem human surrogates (PMHS) to high-speed seatbelt loading and developed external response targets in conjunction with proposing an abdominal injury criterion. A total of seven unembalmed PMHS, with an average mass and stature of 71 kg and 174 cm respectively were subjected to belt loading using a seatbelt pull mechanism, with the PMHS seated upright in a free-back configuration. A pneumatic piston pulled a seatbelt into the abdomen at the level of the umbilicus with a nominal peak penetration speed of 4.0 m/s. Pressure transducers were placed in the re-pressurized abdominal vasculature, including the inferior vena cava (IVC) and abdominal aorta, to measure internal pressure variation during the event.
Technical Paper

A Simulation-Based Study on the Improvement of Semi-Truck Roll Stability in Roundabouts

2016-09-27
2016-01-8038
This paper studies the effect of different longitudinal load conditions, roundabout cross-sectional geometry, and different semi-truck pneumatic suspension systems on roll stability in roundabouts, which have become more and more popular in urban settings. Roundabouts are commonly designed in their size and form to accommodate articulated heavy vehicles (AHVs) by evaluating such affects as off-tracking. However, the effect of the roadway geometry in roundabouts on the roll dynamics of semi-tractors and trailers are equally important, along with their entry and exit configuration. , Because the effect of the roundabout on the dynamics of trucks is further removed from the immediate issues considered by roadway planner, at times they are not given as much consideration as other roadway design factors.
Technical Paper

Evaluation of the Kinematic Responses and Potential Injury Mechanisms of the Jejunum during Seatbelt Loading

2015-11-09
2015-22-0009
High-speed biplane x-ray was used to research the kinematics of the small intestine in response to seatbelt loading. Six driver-side 3-point seatbelt simulations were conducted with the lap belt routed superior to the pelvis of six unembalmed human cadavers. Testing was conducted with each cadaver perfused, ventilated, and positioned in a fixed-back configuration with the spine angled 30° from the vertical axis. Four tests were conducted with the cadavers in an inverted position, and two tests were conducted with the cadavers upright. The jejunum was instrumented with radiopaque markers using a minimally-invasive, intraluminal approach without inducing preparation-related damage to the small intestine. Tests were conducted at a target peak lap belt speed of 3 m/s, resulting in peak lap belt loads ranging from 5.4-7.9 kN. Displacement of the radiopaque markers was recorded using high-speed x-ray from two perspectives.
Technical Paper

Comparison of ATD to PMHS Response in the Under-Body Blast Environment

2015-11-09
2015-22-0017
A blast buck (Accelerative Loading Fixture, or ALF) was developed for studying underbody blast events in a laboratory-like setting. It was designed to provide a high-magnitude, high-rate, vertical loading environment for cadaver and dummy testing. It consists of a platform with a reinforcing cage that supports adjustable-height rigid seats for two crew positions. The platform has a heavy frame with a deformable floor insert. Fourteen tests were conducted using fourteen PMHS (post mortem human surrogates) and the Hybrid III ATD (Anthropomorphic Test Device). Tests were conducted at two charge levels: enhanced and mild. The surrogates were tested with and without PPE (Personal Protective Equipment), and in two different postures: nominal (knee angle of 90°) and obtuse (knee angle of 120°). The ALF reproduces damage in the PMHS commensurate with injuries experienced in theater, with the most common damage being to the pelvis and ankle.
Technical Paper

Effects of Commercial Truck Configuration on Roll Stability in Roundabouts

2015-09-29
2015-01-2741
This paper presents the results of a study on the effect of truck configurations on the roll stability of commercial trucks in roundabouts that are commonly used in urban settings with increasing frequency. The special geometric layout of roundabouts can increase the risk of rollover in high-CG vehicles, even at low speeds. Relatively few in-depth studies have been conducted on rollover stability of commercial trucks in roundabouts. This study uses a commercially available software, TruckSim®, to perform simulations on four truck configurations, including a single-unit truck, a WB-67 semi-truck, the combination of a tractor with double 28-ft trailers, and the combination of a tractor with double 40-ft trailers. A single-lane and multilane roundabout are modeled, both with a truck apron. Three travel movements through the roundabouts are considered, including right turn, through-movement, and left turn.
Technical Paper

Analysis of Event Data Recorder Survivability in Crashes with Fire, Immersion, and High Delta-V

2015-04-14
2015-01-1444
Event data recorders (EDRs) must survive regulatory frontal and side compliance crash tests if installed within a car or light truck built on or after September 1, 2012. Although previous research has shown that EDR data are surviving these tests, little is known about whether EDRs are capable of surviving collisions of higher delta-v, or crashes involving vehicle fire or immersion. The goal of this study was to determine the survivability of light vehicle EDRs in real world fire, immersion, and high change in velocity (delta-v) cases. The specific objective was to identify the frequency of these extreme events and to determine the EDR data download outcome when subject to damage caused by these events. This study was performed using three crash databases: the Fatality Analysis Reporting System (FARS), the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS), and the National Motor Vehicle Crash Causation Survey (NMVCCS).
Technical Paper

Survivability of Event Data Recorder Data in Exposure to High Temperature, Submersion, and Static Crush

2015-04-14
2015-01-1449
Event data recorder (EDR) data are currently only required to survive the crash tests specified by Federal Motor Vehicle Safety Standard (FMVSS) 208 and FMVSS 214. Although these crash tests are severe, motor vehicles are also exposed to more severe crashes, fire, and submersion. Little is known about whether current EDR data are capable of surviving these events. The objective of this study was to determine the limits of survivability for EDR data for realistic car crash conditions involving heat, submersion, and static crush. Thirty-one (31) EDRs were assessed in this study: 4 in the pilot tests and 27 in the production tests. The production tests were conducted on model year (MY) 2011-2012 EDRs enclosed in plastic, metal, or a combination of both materials. Each enclosure type was exposed to 9 tests. The high temperature tests were divided into 3 oven testing conditions: 100°C, 150°C, and 200°C.
X