Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Weibull-Log Normal Analysis Workshop

2024-11-19
RMS (Reliability-Maintainability-Safety-Supportability) engineering is emerging as the newest discipline in product development due to new credible, accurate, quantitative methods. Weibull Analysis is foremost among these new tools. New and advanced Weibull techniques are a significant improvement over the original Weibull approach. This workshop, originally developed by Dr. Bob Abernethy, presents special methods developed for these data problems, such as Weibayes, with actual case studies in addition to the latest techniques in SuperSMITH® Weibull for risk forecasts with renewal and optimal component replacement.
Training / Education

AS9100D Internal Auditor Training

2024-10-28
Internal audits are a requirement of the AS9100, AS 13100 and RM 13005 and are intended to verify the compliance and effectiveness of an organization's quality management system. The methods and techniques for performing internal audits have significantly changed in the aviation, space and defense industries, and internal auditors must be knowledgeable of these requirements and the expectations as identified in the standard.
Training / Education

Design for Manufacture and Assembly (DFM/DFA)

2024-10-24
This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. This course provides both a functional understanding of the principles involved in conducting a Design for Manufacture/Design for Assembly (DFM/DFA) study and the process for implementing a DFM/DFA culture into the organization.
Training / Education

Vehicle Dynamics for Passenger Cars and Light Trucks

2024-10-07
This course will present an introduction to vehicle dynamics from a vehicle system perspective. The theory and applications are associated with the interaction and performance balance between the powertrain, brakes, steering, suspensions and wheel and tire vehicle subsystems.  The role that vehicle dynamics can and should play in effective automotive chassis development and the information and technology flow from vehicle system to subsystem to piece-part is integrated into the presentation. Governing equations of motion are developed and solved for both steady and transient conditions.
Training / Education

Applied Vehicle Dynamics

2024-09-23
Take notes! Take the wheel! There is no better place to gain an appreciation for vehicle dynamics than from the driver’s seat. Spend three, intense days with a world-renowned vehicle dynamics engineer and SAE Master Instructor, his team of experienced industry engineers, and the BMW-trained professional driving instructors. They will guide you as you work your way through 12 classroom modules learning how and why vehicles go, stop and turn. Each classroom module is immediately followed by an engaging driving exercise on BMW’s private test track.
Training / Education

ADAS Application Automatic Emergency Braking

2024-09-19
Active safety and (ADAS) are now being introduced to the marketplace as they serve as key enablers for anticipated autonomous driving systems. Automatic emergency braking (AEB) is one ADAS application which is either in the marketplace presently or under development as nearly all automakers have pledged to offer this technology by the year 2022. This one-day course is designed to provide an overview of the typical ADAS AEB system from multiple perspectives.
Training / Education

Vehicle Crash Reconstruction Principles and Technology

2024-09-17
Crash reconstruction is a scientific process that utilizes principles of physics and empirical data to analyze the physical, electronic, video, audio, and testimonial evidence from a crash to determine how and why the crash occurred. This course will introduce this reconstruction process as it gets applied to various crash types - in-line and intersection collisions, pedestrian collisions, motorcycle crashes, rollover crashes, and heavy truck crashes. Methods of evidence documentation will be covered. Analysis methods will also be presented for electronic data from event data recorders and for video.
Training / Education

AS13100 and RM13004 Design and Process Failure Mode and Effects Analysis and Control Plans

2024-07-03
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. In the Aerospace Industry there is a focus on Defect Prevention to ensure that quality goals are met. Failure Mode and Effects Analysis (PFMEA) and Control Plan activities are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Design Failure Mode and Effects Analysis (DFMEA), Process Flow Diagrams, Process Failure Mode and Effects Analysis (PFMEA) and Control Plans as described in AS13100 and RM13004.
Technical Paper

Enabling the security of global time in software-defined vehicles (SGTS, MACsec)

2024-07-02
2024-01-2978
The global time that is propagated and synchronized in the vehicle E/E architecture is used in safety-critical, security-critical, and time-critical applications (e.g., driver assistance functions, intrusion detection system, vehicle diagnostics, external device authentication during vehicle diagnostics, vehicle-to-grid and so on). The cybersecurity attacks targeting the global time result in false time, accuracy degradation, and denial of service as stated in IETF RFC 7384. These failures reduce the vehicle availability, robustness, and safety of the road user. IEEE 1588 lists four mechanisms (integrated security mechanism, external security mechanism, architectural solution, and monitoring & management) to secure the global time. AUTOSAR defines the architecture and detailed specifications for the integrated security mechanism "Secured Global Time Synchronization (SGTS)" to secure the global time on automotive networks (CAN, FlexRay, Ethernet).
Technical Paper

Additively Manufactured Wheel Suspension System with Integrated Conductions and Optimized Structure

2024-07-02
2024-01-2973
Increasing urbanisation and the growing environmental awareness in society require new and innovative vehicle concepts. In the present work, the design freedoms of additive manufacturing (AM) are used to develop a front axle wheel suspension for a novel modular vehicle concept. The development of the suspension components is based on a new method using industry standard load cases for the strength design of the components. To design the chassis components, first the available installation space is determined and a suitable configuration of the chassis components is defined. Furthermore, numerical methods are used to identify component geometries that are suitable for the force flow. The optimisation setup is selected in a way that allows to integrate information, energy and material-carrying conductors into the suspension arms. The conductors even serve as load-bearing structures because of the matching design of the components.
Technical Paper

Probabilistically Extended Ontologies a basis for systematic testing of ML-based systems

2024-07-02
2024-01-3002
Autonomous driving is a hot topic in the automotive domain, and there is an increasing need to prove its reliability. They use machine learning techniques, which are themselves stochastic techniques based on some kind of statistical inference. The occurrence of incorrect decisions is part of this approach and often not directly related to correctable errors. The quality of the systems is indicated by statistical key figures such as accuracy and precision. Numerous driving tests and simulations in simulators are extensively used to provide evidence. However, the basis of all descriptive statistics is a random selection from a probability space. The difficulty in testing or constructing the training and test data set is that this probability space is usually not well defined. To systematically address this shortcoming, ontologies have been and are being developed to capture the various concepts and properties of the operational design domain.
Training / Education

Failure Mode and Effects Analysis (FMEA)

2024-07-02
This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. This courser will introduce the latest version (2019) of Failure Mode and Effects Analysis (FMEA) Handbook with a focus on DFMEA and PFMEA building. Each column of the FMEA document will also be explained in detail with FMEA examples. The course also includes an introduction to the logic for identifying technical risks and thinking tools for risk mitigation.
Training / Education

Tire Forensics and Markings

2024-06-24
This course introduces basic tire mechanics, including tire construction components based on application type, required sidewall stamping in accordance with DoT/ECE regulations, tread patterns, regulatory and research testing on quality, tire inspections and basic tire failure identification. The course will provide you with information that you can use immediately on-the-job and apply to your own vehicle. This course is practical in nature and supplemented with samples and hands-on activities.
Technical Paper

Fuel Cell Fault Simulation and Detection for On Board Diagnostics using Real-Time Digital Twins

2024-06-12
2024-37-0014
The modern automotive industry is facing challenges of ever-increasing complexity in the electrified powertrain era. On-board diagnostic (OBD) systems must be thoroughly validated and calibrated through many iterations to function effectively and meet the regulation standards. Their development and design process are more complex when prototype hardware is not available and therefore virtual testing is a prominent solution, including Software-in-the-loop (SiL) and Hardware-in-the-loop (HIL) simulations. Virtual prototype testing relying on real-time simulation models is necessary to design and test new era’s OBD systems quickly and in scale. The new fuel cell powertrain involves new and preciously unexplored fail modes. To make the system robust, simulations are required to be carried out to identify different fails.
Technical Paper

Comparing the NVH behaviour of an innovative steel-wood hybrid battery housing design to an all aluminium design

2024-06-12
2024-01-2949
The production of electric vehicles (EVs) has a significant environmental impact, with up to 50 % of their lifetime greenhouse gas potential attributed to manufacturing processes. The use of sustainable materials in EV design is therefore crucial for reducing their overall carbon footprint. Wood laminates have emerged as a promising alternative due to their renewable nature. Additionally, wood-based materials offer unique damping properties that can contribute to improved Noise, Vibration, and Harshness (NVH) characteristics. In comparison to conventional materials such as aluminum, ply wood structures exhibit beneficial damping properties. The loss factor of plywood structures with a thickness below 20 mm ranges from 0.013 to 0.032. Comparable aluminum structures however exhibit only a fraction of this loss factor with a range between 0.002 and 0.005.
X