Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Applying Automotive EDR Data to Traffic Crash Reconstruction

2024-10-22
EDR's were first installed in 1994 and are now installed in 99% of new light vehicles sold in the US. In the US EDR’s are not required, but vehicles with EDR’s made after 9/1/2012 must meet minimum standardized content requirements of 49 CFR, Part 563 including speed, throttle, brake on/off and Delta V.  Data must be retrievable with a publicly available tool.  Only a few manufacturers install EDR’s worldwide currently, but the EU and China are adopting regulations to require them in the next few years.  
Training / Education

Vehicle Crash Reconstruction Principles and Technology

2024-09-17
Crash reconstruction is a scientific process that utilizes principles of physics and empirical data to analyze the physical, electronic, video, audio, and testimonial evidence from a crash to determine how and why the crash occurred. This course will introduce this reconstruction process as it gets applied to various crash types - in-line and intersection collisions, pedestrian collisions, motorcycle crashes, rollover crashes, and heavy truck crashes. Methods of evidence documentation will be covered. Analysis methods will also be presented for electronic data from event data recorders and for video.
Training / Education

Injuries, Anatomy, Biomechanics & Federal Regulation

2024-09-09
Safety continues to be one of the most important factors in motor vehicle design, manufacturing, and marketing.  This course provides a comprehensive overview of these critical automotive safety considerations: injury and anatomy; human tolerance and biomechanics; occupant protection; testing; and federal legislation. The knowledge shared at this course enables participants to be more aware of safety considerations and to better understand and interact with safety experts. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 18 Continuing Education Units (CEUs).
Training / Education

AS13100 and RM13000 8D Problem Solving Requirements for Suppliers

2024-08-29
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. AS13100 and RM13000 define the Problem-Solving standard for suppliers within the aero-engine sector, with the Eight Disciplines (8D) problem solving method the basis for this standard. This two-day course provides participants with a comprehensive and standardized set of tools to become an 8D practitioner. Successful application of 8D achieves robust corrective and preventive actions to reduce the risk of repeat occurrences and minimize the cost of poor quality.
Training / Education

Photogrammetry and Analysis of Digital Media

2024-08-28
Photographs and video recordings of vehicle crashes and accident sites are more prevalent than ever, with dash mounted cameras, surveillance footage, and personal cell phones now ubiquitous. The information contained in these pictures and videos provide critical information to understanding how crashes occurred, and  analyze physical evidence. This course teaches the theory and techniques for getting the most out of digital media, including correctly processing raw video and photographs, correcting for lens distortion, and using photogrammetric techniques to convert the information in digital media to usable scaled three-dimensional data.
Training / Education

AS9145 Requirements for Advanced Product Quality Planning and Production Part Approval

2024-07-08
This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. Production and continual improvement of safe and reliable products is key in the aviation, space, and defense industries. Customer and regulatory requirements must not only be met, but they are typically expected to exceeded requirements. Due to globalization, the supply chain of this industry has been expanded to countries which were not part of it in the past and has complicated the achievement of requirements compliance and customer satisfaction.
Training / Education

AS13100 and RM13004 Design and Process Failure Mode and Effects Analysis and Control Plans

2024-07-03
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. In the Aerospace Industry there is a focus on Defect Prevention to ensure that quality goals are met. Failure Mode and Effects Analysis (PFMEA) and Control Plan activities are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Design Failure Mode and Effects Analysis (DFMEA), Process Flow Diagrams, Process Failure Mode and Effects Analysis (PFMEA) and Control Plans as described in AS13100 and RM13004.
Technical Paper

Thermal Management System for Battery Electric Heavy-Duty Trucks

2024-07-02
2024-01-2971
On the path to decarbonizing road transport, electric commercial vehicles will play a significant role. The first applications were directed to the smaller trucks for distribution traffic with relatively moderate driving and range requirements, but meanwhile, the first generation of a complete portfolio of truck sizes is developed and available on the market. In these early applications, many compromises were accepted to overcome component availability, but meanwhile, the supply chain can address the specific needs of electric trucks. With that, the optimization towards higher usability and lower costs can be moved to the next level. Especially for long-haul trucks, efficiency is a driving factor for the total costs of ownership. Besides the propulsion system, all other systems must be optimized for higher efficiency. This includes thermal management since the thermal management components consume energy and have a direct impact on the driving range.
Technical Paper

Set-up of an in-car system for investigating driving style on the basis of the 3D-method

2024-07-02
2024-01-3001
Investigating human driver behavior enhances the acceptance of the autonomous driving and increases road safety in heterogeneous environments with human-operated and autonomous vehicles. The previously established driver fingerprint model, focuses on the classification of driving style based on CAN bus signals. However, driving styles are inherently complex and influenced by multiple factors, including changing driving environments and driver states. To comprehensively create a driver profile, an in-car measurement system based on the Driver-Driven vehicle-Driving environment (3D) framework is developed. The measurement system records emotional and physiological signals from the driver, including ECG signal and heart rate. A Raspberry Pi camera is utilized on the dashboard to capture the driver's facial expressions and a trained convolutional neural network (CNN) recognizes emotion. To conduct unobtrusive ECG measurements, an ECG sensor is integrated into the steering wheel.
Book

Stapp Car Crash Journal

2024-06-28
This title includes the technical papers developed for the 2023 Stapp Car Crash Conference, the premier forum for the presentation of research in impact biomechanics, human injury tolerance, and related fields, advancing the knowledge of land-vehicle crash injury protection. The conference provides an opportunity to participate in open discussion about the causes and mechanisms of injury, experimental methods and tools for use in impact biomechanics research, and the development of new concepts for reducing injuries and fatalities in automobile crashes.
Training / Education

Tire Forensics and Markings

2024-06-24
This course introduces basic tire mechanics, including tire construction components based on application type, required sidewall stamping in accordance with DoT/ECE regulations, tread patterns, regulatory and research testing on quality, tire inspections and basic tire failure identification. The course will provide you with information that you can use immediately on-the-job and apply to your own vehicle. This course is practical in nature and supplemented with samples and hands-on activities.
Training / Education

AS13100 RM13010 Human Factors for Aviation

2024-06-19
The aerospace industry is focused on fostering a positive safety culture and competency in Human Factors considerations supports competencies crucial to an organization's quality management and safety. Many standards include requirements for embedding Human Factors within the aerospace manufacturing and supply chains. This course introduces the skills and knowledge supporting compliance and capability in human performance. This course provides an overview of Human Factors management in aviation and clarifies what individuals and companies can do to optimize the effects of Human Factors within their organization.
Technical Paper

Comparing the NVH behaviour of an innovative steel-wood hybrid battery housing design to an all aluminium design

2024-06-12
2024-01-2949
The production of electric vehicles (EVs) has a significant environmental impact, with up to 50 % of their lifetime greenhouse gas potential attributed to manufacturing processes. The use of sustainable materials in EV design is therefore crucial for reducing their overall carbon footprint. Wood laminates have emerged as a promising alternative due to their renewable nature. Additionally, wood-based materials offer unique damping properties that can contribute to improved Noise, Vibration, and Harshness (NVH) characteristics. In comparison to conventional materials such as aluminum, ply wood structures exhibit beneficial damping properties. The loss factor of plywood structures with a thickness below 20 mm ranges from 0.013 to 0.032. Comparable aluminum structures however exhibit only a fraction of this loss factor with a range between 0.002 and 0.005.
Technical Paper

Towards the Design-driven Carbon Footprint reduction of Composite Aerospace and Automotive components: An overview

2024-06-12
2024-37-0032
Composite materials, pioneered by aerospace engineering due to their lightweight, strength, and durability properties, are increasingly adopted in the high-performance automotive sector. Besides the acknowledged composite components’ performance, enabled lightweighting is becoming even more crucial for energy efficiency, and therefore emissions along vehicle use phase from a decarbonization perspective. However, their use entails energy-intensive and polluting processes involved in raw material production, in manufacturing processes, and, in particular, in end-of-life disposal. Carbon footprint is the established indicator to assess the environmental impact of climate-changing factors on products or services. Research on different carbon footprint sources reduction is increasing, and even the European Composites Industry Association is demanding the development of specific Design for Sustainability approaches.
Technical Paper

A Finite-Element-Simulation Workflow to Investigate the Aero- and Vibro-Acoustic Signature of an Enclosed Centrifugal Fan

2024-06-12
2024-01-2940
Centrifugal fans are applied in many industrial and civil applications, such as manufacturing processes and building HVAC systems. They can also be found in automotive applications. Noise-reduction mea- sures for centrifugal fans are often challenging to establish, as acous- tic performance may be considered a tertiary purchase criterion after energetic efficiency and price. Nonetheless, their versatile application raises the demand for noise control. In a low-Mach-number centrifugal fan, acoustic waves are predominantly excited by aerodynamic fluctu- ations in the flow field and transmit to the exterior via the housing and duct walls. The scientific literature documents numerous mech- anisms that cause flow-induced sound generation, even though only some are considered well-understood. Numerical simulation methods are widely used to gather spatially high-resolved insights into physical fields.
X