Refine Your Search

Topic

Author

Search Results

Technical Paper

The Effects of CO, H2, and C3H6 on the SCR Reactions of an Fe Zeolite SCR Catalyst

2013-04-08
2013-01-1062
Selective Catalytic Reduction (SCR) catalysts used in Lean NOx Trap (LNT) - SCR exhaust aftertreatment systems typically encounter alternating oxidizing and reducing environments. Reducing conditions occur when diesel fuel is injected upstream of a reformer catalyst, generating high concentrations of hydrogen (H₂), carbon monoxide (CO), and hydrocarbons to deNOx the LNT. In this study, the functionality of an iron (Fe) zeolite SCR catalyst is explored with a bench top reactor during steady-state and cyclic transient SCR operation. Experiments to characterize the effect of an LNT deNOx event on SCR operation show that adding H₂ or CO only slightly changes SCR behavior with the primary contribution being an enhancement of nitrogen dioxide (NO₂) decomposition into nitric oxide (NO). Exposure of the catalyst to C₃H₆ (a surrogate for an actual exhaust HC mixture) leads to a significant decrease in NOx reduction capabilities of the catalyst.
Technical Paper

Computational Investigation of the Stratification Effects on DI/HCCI Engine Combustion at Low Load Conditions

2009-11-02
2009-01-2703
A numerical study has been conducted to investigate possible extension of the low load limit of the HCCI operating range by charge stratification using direct injection. A wide range of SOI timings at a low load HCCI engine operating condition were numerically examined to investigate the effect of DI. A multidimensional CFD code KIVA3v with a turbulent combustion model based on a modified flamelet approach was used for the numerical study. The CFD code was validated against experimental data by comparing pressure traces at different SOI’s. A parametric study on the effect of SOI on combustion has been carried out using the validated code. Two parameters, the combustion efficiency and CO emissions, were chosen to examine the effect of SOI on combustion, which showed good agreement between numerical results and experiments. Analysis of the in-cylinder flow field was carried out to identify the source of CO emissions at various SOI’s.
Technical Paper

Load Limits with Fuel Effects of a Premixed Diesel Combustion Mode

2009-06-15
2009-01-1972
Premixed diesel combustion is intended to supplant conventional combustion in the light to mid load range. This paper demonstrates the operating load limits, limiting criteria, and load-based emissions behavior of a direct-injection, diesel-fueled, premixed combustion mode across a range of test fuels. Testing was conducted on a modern single-cylinder engine fueled with a range of ultra-low sulfur fuels with cetane number ranging from 42 to 53. Operating limits were defined on the basis of emissions, noise, and combustion stability. The emissions behavior and operating limits of the tested premixed combustion mode are independent of fuel cetane number. Combustion stability, along with CO and HC emissions levels, dictate the light load limit. The high load limit is solely dictated by equivalence ratio: high PM, CO, and HC emissions result as overall equivalence ratio approaches stoichiometric.
Journal Article

Premixed Low Temperature Combustion of Biodiesel and Blends in a High Speed Compression Ignition Engine

2009-04-20
2009-01-0133
The effects of combining premixed, low temperature combustion (LTC) with biodiesel are relatively unknown to this point. This mode allows simultaneously low soot and NOx emissions by using high rates of EGR and increasing ignition delay. This paper compares engine performance and emissions of neat, soy-based methyl ester biodiesel (B100), B20, B50, pure ultra low sulfur diesel (ULSD) and a Swedish, low aromatic diesel in a multi-cylinder diesel engine operating in a late-injection premixed LTC mode. Using heat release analysis, the progression of LTC combustion was explored by comparing fuel mass fraction burned. B100 had a comparatively long ignition delay compared with Swedish diesel when measured by start of ignition (SOI) to 10% fuel mass fraction burned (CA10). Differences were not as apparent when measured by SOI to start of combustion (SOC) even though their cetane numbers are comparable.
Technical Paper

Numerical Modeling and Experimental Investigations of EGR Cooler Fouling in a Diesel Engine

2009-04-20
2009-01-1506
EGR coolers are mainly used on diesel engines to reduce intake charge temperature and thus reduce emissions of NOx and PM. Soot and hydrocarbon deposition in the EGR cooler reduces heat transfer efficiency of the cooler and increases emissions and pressure drop across the cooler. They may also be acidic and corrosive. Fouling has been always treated as an approximate factor in heat exchanger designs and it has not been modeled in detail. The aim of this paper is to look into fouling formation in an EGR cooler of a diesel engine. A 1-D model is developed to predict and calculate EGR cooler fouling amount and distribution across a concentric tube heat exchanger with a constant wall temperature. The model is compared to an experiment that is designed for correlation of the model. Effectiveness, mass deposition, and pressure drop are the parameters that have been compared. The results of the model are in a good agreement with the experimental data.
Journal Article

An Evaluation of Residual Gas Fraction Measurement Techniques in a High Degree of Freedom Spark Ignition Engine

2008-04-14
2008-01-0094
Stringent fuel economy and emissions regulations have driven development of new mixture preparation technologies and increased spark-ignition engine complexity. Additional degrees of freedom, brought about by devices such as cam phasers and charge motion control valves, enable greater range and flexibility in engine control. This permits significant gains in fuel efficiency and emission control, but creates challenges related to proper engine control and calibration techniques. Accurate experimental characterization of high degree of freedom engines is essential for addressing the controls challenge. In particular, this paper focuses on the evaluation of three experimental residual gas fraction measurement techniques for use in a spark ignition engine equipped with dual-independent variable camshaft phasing (VVT).
Technical Paper

Simultaneous Reduction of NOX and Soot in a Heavy-Duty Diesel Engine by Instantaneous Mixing of Fuel and Water

2007-04-16
2007-01-0125
Meeting diesel engine emission standards for heavy-duty vehicles can be achieved by simultaneous injection of fuel and water. An injection system for instantaneous mixing of fuel and water in the combustion chamber has been developed by injecting water in a mixing passage located in the periphery of the fuel spray. The fuel spray is then entrained by water and hot air before it burns. The experimental work was carried out on a Rapid Compression Machine and on a Komatsu direct-injection heavy-duty diesel engine with a high pressure common rail fuel injection system. It was also supported by Computational Fluid Dynamics simulations of the injection and combustion processes in order to evaluate the effect of water vapor distribution on cylinder temperature and NOX formation. It has been concluded that when the water injection is appropriately timed, the combustion speed is slower and the cylinder temperature lower than in conventional diesel combustion.
Technical Paper

Control of a Multi-Cylinder HCCI Engine During Transient Operation by Modulating Residual Gas Fraction to Compensate for Wall Temperature Effects

2007-04-16
2007-01-0204
The thermal conditions of an engine structure, in particular the wall temperatures, have been shown to have a great effect on the HCCI engine combustion timing and burn rates through wall heat transfer, especially during transient operations. This study addresses the effects of thermal inertia on combustion in an HCCI engine. In this study, the control of combustion timing in an HCCI engine is achieved by modulating the residual gas fraction (RGF) while considering the wall temperatures. A multi-cylinder engine simulation with detailed geometry is carried out using a 1-D system model (GT-Power®) that is linked with Simulink®. The model includes a finite element wall temperature solver and is enhanced with original HCCI combustion and heat transfer models. Initially, the required residual gas fraction for optimal BSFC is determined for steady-state operation. The model is then used to derive a map of the sensitivity of optimal residual gas fraction to wall temperature excursions.
Technical Paper

Characterizing the Effect of Combustion Chamber Deposits on a Gasoline HCCI Engine

2006-10-16
2006-01-3277
Homogenous Charge Compression Ignition (HCCI) engines offer a good potential for achieving high fuel efficiency while virtually eliminating NOx and soot emissions from the exhaust. However, realizing the full fuel economy potential at the vehicle level depends on the size of the HCCI operating range. The usable HCCI range is determined by the knock limit on the upper end and the misfire limit at the lower end. Previously proven high sensitivity of the HCCI process to thermal conditions leads to a hypothesis that combustion chamber deposits (CCD) could directly affect HCCI combustion, and that insight about this effect can be helpful in expanding the low-load limit. A combustion chamber conditioning process was carried out in a single-cylinder gasoline-fueled engine with exhaust re-breathing to study CCD formation rates and their effect on combustion. Burn rates accelerated significantly over the forty hours of running under typical HCCI operating conditions.
Technical Paper

Characterizing Light-Off Behavior and Species-Resolved Conversion Efficiencies During In-Situ Diesel Oxidation Catalyst Degreening

2006-04-03
2006-01-0209
Degreening is crucial in obtaining a stable catalyst prior to assessing its performance characteristics. This paper characterizes the light-off behavior and conversion efficiency of a Diesel Oxidation Catalyst (DOC) during the degreening process. A platinum DOC is degreened for 16 hours in the presence of actual diesel engine exhaust at 650°C and 10% water (H2O) concentration. The DOC's activity for carbon monoxide (CO) and for total hydrocarbons (THC) conversion is checked at 0, 1, 2, 3, 4, 6, 8, 10, 12, and 16 hours of degreening. Pre-and post-catalyst hydrocarbon species are analyzed via gas chromatography at 0, 4, 8, and 16 hours of degreening. It is found that both light-off temperature and species-resolved conversion efficiencies change rapidly during the first 8 hours of degreening and then stabilize to a large degree. T50, the temperature where the catalyst is 50% active towards a particular species, increases by 14°C for CO and by 11°C for THC through the degreening process.
Technical Paper

Speciated Hydrocarbon Emissions from an Automotive Diesel Engine and DOC Utilizing Conventional and PCI Combustion

2006-04-03
2006-01-0201
Premixed compression ignition low-temperature diesel combustion (PCI) can simultaneously reduce particulate matter (PM) and oxides of nitrogen (NOx). Carbon monoxide (CO) and total hydrocarbon (THC) emissions increase relative to conventional diesel combustion, however, which may necessitate the use of a diesel oxidation catalyst (DOC). For a better understanding of conventional and PCI combustion, and the operation of a platinum-based production DOC, engine-out and DOC-out exhaust hydrocarbons are speciated using gas chromatography. As combustion mode is changed from lean conventional to lean PCI to rich PCI, engine-out CO and THC emissions increase significantly. The relative contributions of individual species also change; increasing methane/THC, acetylene/THC and CO/THC ratios indicate a richer combustion zone and a reduction in engine-out hydrocarbon incremental reactivity.
Technical Paper

Analysis of Load and Speed Transitions in an HCCI Engine Using 1-D Cycle Simulation and Thermal Networks

2006-04-03
2006-01-1087
Exhaust gas rebreathing is considered to be a practical enabler that could be used in HCCI production engines. Recent experimental work at the University of Michigan demonstrates that the combustion characteristics of an HCCI engine using large amounts of hot residual gas by rebreathing are very sensitive to engine thermal conditions. This computational study addresses HCCI engine operation with rebreathing, with emphasis on the effects of engine thermal conditions during transient periods. A 1-D cycle simulation with thermal networks is carried out under load and speed transitions. A knock integral auto-ignition model, a modified Woschni heat transfer model for HCCI engines and empirical correlations to define burn rate and combustion efficiency are incorporated into the engine cycle simulation model. The simulation results show very different engine behavior during the thermal transient periods compared with steady state.
Technical Paper

Development and Validation of a Comprehensive CFD Model of Diesel Spray Atomization Accounting for High Weber Numbers

2006-04-03
2006-01-1546
Modern diesel engines operate under injection pressures varying from 30 to 200 MPa and employ combinations of very early and conventional injection timings to achieve partially homogeneous mixtures. The variety of injection and cylinder pressures results in droplet atomization under a wide range of Weber numbers. The high injection velocities lead to fast jet disintegration and secondary droplet atomization under shear and catastrophic breakup mechanisms. The primary atomization of the liquid jet is modeled considering the effects of both infinitesimal wave growth on the jet surface and jet turbulence. Modeling of the secondary atomization is based on a combination of a drop fragmentation analysis and a boundary layer stripping mechanism of the resulting fragments for high Weber numbers. The drop fragmentation process is predicted from instability considerations on the surface of the liquid drop.
Technical Paper

Pressure Reactive Piston Technology Investigation and Development for Spark Ignition Engines

2005-04-11
2005-01-1648
Variable Compression Ratio (VCR) technology has long been recognized as a method of improving Spark Ignition (SI) engine fuel economy. The Pressure Reactive Piston (PRP) assembly features a two-piece piston, with a piston crown and separate piston skirt which enclose a spring set between them. The unique feature is that the upper piston reacts to the cylinder pressure, accommodating rapid engine load changes passively. This mechanism effectively limits the peak pressures at high loads without an additional control device, while allowing the engine to operate at high compression ratio during low load conditions. Dynamometer engine testing showed that Brake Specific Fuel Consumption (BSFC) improvement of the PRP over the conventional piston ranged from 8 to 18 % up to 70% load. Knock free full load operation was also achieved. The PRP equipped engine combustion is characterized by reverse motion of the piston crown near top dead center and higher thermal efficiency.
Technical Paper

Evaluation of a Narrow Spray Cone Angle, Advanced Injection Timing Strategy to Achieve Partially Premixed Compression Ignition Combustion in a Diesel Engine

2005-04-11
2005-01-0167
Simultaneous reduction of nitric oxides (NOx) and particulate matter (PM) emissions is possible in a diesel engine by employing a Partially Premixed Compression Ignition (PPCI) strategy. PPCI combustion is attainable with advanced injection timings and heavy exhaust gas recirculation rates. However, over-advanced injection timing can result in the fuel spray missing the combustion bowl, thus dramatically elevating PM emissions. The present study investigates whether the use of narrow spray cone angle injector nozzles can extend the limits of early injection timings, allowing for PPCI combustion realization. It is shown that a low flow rate, 60-degree spray cone angle injector nozzle, along with optimized EGR rate and split injection strategy, can reduce engine-out NOx by 82% and PM by 39%, at the expense of a modest increase (4.5%) in fuel consumption.
Technical Paper

Lean and Rich Premixed Compression Ignition Combustion in a Light-Duty Diesel Engine

2005-04-11
2005-01-0166
Lean Premixed Compression Ignition (PCI) low-temperature combustion promises to simultaneously reduce NOx and PM emissions, while suffering a moderate penalty in fuel consumption. Similarly, opportunities exist to develop rich PCI combustion strategies which can provide the necessary exhaust constituents for aggressive regeneration of a Lean NOx Trap (LNT). The current work highlights the development of lean and rich PCI combustion strategies. It is shown that the lean PCI combustion strategy successfully operates with low NOx and PM, at the expense of a 5% increase in fuel consumption over conventional diesel operation. The rich PCI combustion strategy similarly operates with low NOx and PM, and produces enough CO (up to 5% by volume in exhaust) for aggressive regeneration of an LNT.
Technical Paper

Analysis of Premixed Charge Compression Ignition Combustion With a Sequential Fluid Mechanics-Multizone Chemical Kinetics Model

2005-04-11
2005-01-0115
We have developed a methodology for analysis of Premixed Charge Compression Ignition (PCCI) engines that applies to conditions in which there is some stratification in the air-fuel distribution inside the cylinder at the time of combustion. The analysis methodology consists of two stages: first, a fluid mechanics code is used to determine temperature and equivalence ratio distributions as a function of crank angle, assuming motored conditions. The distribution information is then used for grouping the mass in the cylinder into a two-dimensional (temperature-equivalence ratio) array of zones. The zone information is then handed on to a detailed chemical kinetics model that calculates combustion, emissions and engine efficiency information. The methodology applies to situations where chemistry and fluid mechanics are weakly linked.
Technical Paper

New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux

2004-10-25
2004-01-2996
An experimental study has been carried out to provide qualitative and quantitative insight into gas to wall heat transfer in a gasoline fueled Homogeneous Charge Compression Ignition (HCCI) engine. Fast response thermocouples are embedded in the piston top and cylinder head surface to measure instantaneous wall temperature and heat flux. Heat flux measurements obtained at multiple locations show small spatial variations, thus confirming relative uniformity of in-cylinder conditions in a HCCI engine operating with premixed charge. Consequently, the spatially-averaged heat flux represents well the global heat transfer from the gas to the combustion chamber walls in the premixed HCCI engine, as confirmed through the gross heat release analysis. Heat flux measurements were used for assessing several existing heat transfer correlations. One of the most popular models, the Woschni expression, was shown to be inadequate for the HCCI engine.
Technical Paper

Using Artificial Neural Networks for Representing the Air Flow Rate through a 2.4 Liter VVT Engine

2004-10-25
2004-01-3054
The emerging Variable Valve Timing (VVT) technology complicates the estimation of air flow rate because both intake and exhaust valve timings significantly affect engine's gas exchange and air flow rate. In this paper, we propose to use Artificial Neural Networks (ANN) to model the air flow rate through a 2.4 liter VVT engine with independent intake and exhaust camshaft phasers. The procedure for selecting the network architecture and size is combined with the appropriate training methodology to maximize accuracy and prevent overfitting. After completing the ANN training based on a large set of dynamometer test data, the multi-layer feedforward network demonstrates the ability to represent air flow rate accurately over a wide range of operating conditions. The ANN model is implemented in a vehicle with the same 2.4 L engine using a Rapid Prototype Controller.
Technical Paper

An Optimization Study of Manufacturing Variation Effects on Diesel Injector Design with Emphasis on Emissions

2004-03-08
2004-01-1560
This paper investigates the effects of manufacturing variations in fuel injectors on the engine performance with emphasis on emissions. The variations are taken into consideration within a Reliability-Based Design Optimization (RBDO) framework. A reduced version of Multi-Zone Diesel engine Simulation (MZDS), MZDS-lite, is used to enable the optimization study. The numerical noise of MZDS-lite prohibits the use of gradient-based optimization methods. Therefore, surrogate models are developed to filter out the noise and to reduce computational cost. Three multi-objective optimization problems are formulated, solved and compared: deterministic optimization using MZDS-lite, deterministic optimization using surrogate models and RBDO using surrogate models. The obtained results confirm that manufacturing variation effects must be taken into account in the early product development stages.
X