Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Control of Microwave Plasma for Ignition Enhancement Using Microwave Discharge Igniter

2017-09-04
2017-24-0156
The Microwave Discharge Igniter (MDI) was developed to create microwave plasma for ignition improvement inside combustion engines. The MDI plasma discharge is generated using the principle of microwave resonance with microwave (MW) originating from a 2.45 GHz semiconductor oscillator; it is then further enhanced and sustained using MW from the same source. The flexibility in the control of semiconductors allows multiple variations of MW signal which in turn, affects the resonating plasma characteristics and subsequently the combustion performance. In this study, a wide range of different MW signal parameters that were used for the control of MDI were selected for a parametric study of the generated Microwave Plasma. Schlieren imaging of the MDI-ignited propane flame were carried out to assess the impact on combustion quality of different MW parameters combinations.
Technical Paper

Emission Spectroscopy Study of the Microwave Discharge Igniter

2017-09-04
2017-24-0153
Requirements for reducing consumption of hydrocarbon fuels, as well as reducing emissions force the scientific community to develop new ignition systems. One of possible solutions is an extension of the lean ignition limit of stable combustion. With the decrease of the stoichiometry of combustible mixture the minimal size of the ignition kernel (necessary for development of combustion) increases. Therefore, it is necessary to use some special techniques to extend the ignition kernel region. Pulsed microwave discharge allows the formation of the ignition kernels of larger diameters. Although the microwave discharge igniter (MDI) was already tested for initiation of combustion and demonstrated quite promising results, the parameters of plasma was not yet studied before. Present work demonstrates the results of the dynamics of spatial structure of the MDI plasma with nanosecond time resolution.
Technical Paper

Measurement of Flame Propagation Characteristics in an SI Engine Using Micro-Local Chemiluminescence Technique

2005-04-11
2005-01-0645
A small Cassegrain optics sensor was developed to measure local chemiluminescence spectra and the local chemiluminescence intensities of OH*, CH*, and C2* in a four-stroke spark-ignition (SI) engine in order to investigate the propagation characteristics of the turbulent premixed flame. The small Cassegrain optics sensor was an M5 type that could be installed in place of a pressure transducer. The measurements could be used to estimate the flame propagation speed, burning zone thickness, and local air/fuel (A/F) ratio for each cycle. The specifications of the small Cassegrain optics sensor were the same as those used for previous engine measurements. In this paper, measurements were made of several A/F ratios using gasoline to fuel the model engine. The performances of two Cassegrain optics sensors were compared to demonstrate the advantages of the new small sensor by measuring the local chemiluminescence intensities of a turbulent premixed flame in the model engine.
Technical Paper

In-spark-plug Sensor for Analyzing the Initial Flame and Its Structure in an SI Engine

2005-04-11
2005-01-0644
An in-spark-plug flame sensor was developed to measure local chemiluminescence near the spark gap in a practical spark-ignition (SI) engine in order to study the development of the initial flame kernel, flame front structure, transient phenomena, and the correlation between the initial flame kernel structure and cyclic variation in the flame front structure, which influences engine performance directly. The sensor consists of a commercial instrumented spark plug with small Cassegrain optics and an optical fiber. The small Cassegrain optics were developed to measure the local chemiluminescence intensity profile and temporal history of OH*, CH*, and C2* at the flame front formed in a turbulent premixed flame in an SI engine. A highresolution monochromator with an intensified chargecoupled device (ICCD) and spectroscopy using optical filters and photomultiplier tubes (PMTs) were used to measure the time-series of the three radicals, as well as the in-cylinder pressure.
Technical Paper

Local A/F Measurement by Chemiluminescence OH*, CH* and C2* in SI Engine

2001-03-05
2001-01-0919
The chemiluminescence emission intensity can be measured with high temporal resolution, leading to understanding the chemical reaction. Time-series chemiluminescence measurements of OH*, CH* and C2* were carried out to understand flame propagation speed, its thickness and A/F ratio of combustion status. The optical piston head (quartz) allows us to visualize combustion chamber. It is found that the chemiluminescence intensity ratio of CH*/OH* and C2*/OH* can estimate local A/F. The A/F measured by O2 sensor was used for evaluation and the results indicate this method can be applicable to estimate A/F.
Technical Paper

Experimental Detection of Misfiring Source from Flow Rate Variation at Transfer Port and Exhaust Pipe in a Two-Stroke Engine

1995-09-01
951781
The purpose of this study was to detect a misfiring cycle in terms of the transfer-passage and the exhaust-pipe flow rate by experimental measurements. Simultaneous measurements of flow rates and in-cylinder pressure were carried out. The flow rate data were grouped into the different combustion classes by the in-cylinder pressure. A large flow rate of exhaust blow-down and a large reverse flow rate were observed in the cycle before misfiring, compared with in the cycle before firing. It showed that high concentration of the residual burnt gas in the cylinder was the main source of misfiring, this feature was also demonstrated by the complementary measurement of CO and CO2 concentrations.
Technical Paper

In-Cylinder Flow Measurement and Its Application for Cyclic Variation Analysis in a Two-Stroke Engine

1995-02-01
950224
The purpose of this study is to experimentally investigate in-cylinder flows with cyclic variation in a practical part-loaded two-stroke engine. First, the in-cylinder LDV measurements are introduced, which were carried out above the port layout and the combustion chamber as well as the exhaust pipe or the transfer port together with the simultaneous pressure measurements. Second, the in-cylinder flow characteristics in different combustion groups were discussed. The in-cylinder flow and the combustion-chamber flow were not simply characterized by the pressure variation in the engine or the other passage flow in the exhaust pipe or the transfer port. Finally, the in-cylinder flow structure with three stages was shown using the vector variation analysis and the drawing of the velocity profiles in the engine parts.
Technical Paper

Cyclic Variation of CO and CO2 Emissions and Scavenging Flow in a Two-Stroke Engine

1994-03-01
940392
The purpose of this study is to experimentally understand the cyclic variation of combustion state in a two-stroke engine with respect to the variations in scavenging flow and the CO and CO2 emissions. The criteria of grouping combustion states into misfiring were established using the in-cylinder pressure at the crankangle of maximum variability in peak pressure instead of indicated mean effective pressure. The CO and CO2 emissions and the flow velocity variations in the transfer port and the exhaust pipe were measured. Combustion of each cycle was grouped into misfiring, incomplete firing or firing by the criteria of the in-cylinder pressure. In the cycle before misfiring, the CO and CO2 concentration showed high level and the first peak of the exhaust flow showed large velocity and the positive velocity remained for long duration, and the exhaust and the transfer port flow were steeply decelerated to negative velocity midway between scavenge port opening and bottom dead center.
Technical Paper

Misfiring Effects on Scavenging Flow at Scavenging Port and Exhaust Pipe in a Small Two-Stroke-Engine

1993-03-01
930498
Misfiring cycles were detected by a conditional sampling method to demonstrate the differences between firing and misfiring of the scavenging flow characteristics at the scavenging port and exhaust pipe using LDV method. The results show that the flow at the scavenging port was not influenced significantly by misfiring, but the blowdown flow in the exhaust pipe greatly depended on the combustion status. The blow-down flow of fired cycles at a light-load condition was very similar to the flow at a full-load condition. It was also found that measured flow characteristics at partial load should not be considered by averaging firing and misfiring cycles. The occurrence pattern of misfiring should be quantified and considered in the analysis.
Technical Paper

Exhaust Gas Flow Behavior in a Two-Stroke Engine

1993-03-01
930502
The velocity variations of the burnt exhaust gas in a practical fired two-stroke engine operating under wide-open-throttle conditions were measured by a fiber LDV ( FLDV ). The characteristics of the exhaust flow are discussed in comparison with those in motoring and in a transfer port. The relation between velocity variation and pressure wave propagation in the exhaust pipe are also investigated. The measured results show that the velocity distribution in the exhaust pipe can be characterized as pulsative flow. The flow characteristics had large influence by the combustion pressure wave propagation. During exhaust and transfer-port opening, the intake flow and the blow-down flow have similar velocity gradient and peak location. The velocity distribution in the exhaust pipe was also measured, which showed pulsative flow variation having no recirculating vortex.
Technical Paper

Flow Vector Measurements at the Scavenging Ports in a Fired Two-Stroke Engine

1992-02-01
920420
The flow vector variations at the transfer port exit in a small two-stroke engine under firing condition were investigated experimentally. A fiber LDV system was used to measure the two-dimensional velocities near the cylinder to obtain the scavenging flow vector. The scavenging flow vector variations at different engine speeds were discussed, and the relation between its vector behavior and the pressure differences between the exhaust pipe and the crankcase was examined. The measurement results show that the velocity profiles at the scavenging port were not uniform and to obtain the representative velocity at the port exit was impossible. But the major features of the scavenging flow can be understood from the pressure difference between the exhaust pipe and the crankcase. The start timing of the scavenging flow was delayed due to the residual gas and high pressure in the cylinder when the scavenging port was opened.
Technical Paper

Scavenging Flow Measurements in a Motored Two-Stroke Engine by Fiber LDV

1991-02-01
910669
The flow velocity in a scavenging port of a small two-stroke engine was measured directly by a specially developed fiber LDV. The measurement was carried out under motored conditions at engine speeds of 1500 to 5000 rpm, and with throttle-opening ratios of 100, 50, and 20 %. The performance of the FLDV was improved for measuring the scavenging velocity in the backscatter mode. The flow in the scavenging port changed significantly from -11 m/s to 47 m/s with the engine cycle, and the pressure difference between the crankcase and the exhaust pipe provided the typical features of the flow but not the absolute values. The results show that the scavenging flow entered the cylinder just before scavenging port opening (SO) and reached a maximum at the crank angle of 145°, which was constant for all conditions. A second velocity peak was formed by the back pressure from the exhaust pipe. The charging rate of the fresh air into the cylinder was obtained to evaluate the engine performance.
X