Refine Your Search

Topic

Search Results

Technical Paper

Preliminary Estimates of Near Side Crash Injury Risk in Best Performing Passenger Vehicles

2018-04-03
2018-01-0548
The goal of this paper is to estimate near-side injury risk in vehicles with the best side impact performance in the U.S. New Car Assessment Program (NCAP). The longer-term goal is to predict the incidence of crashes and injury outcomes in the U.S. in a future fleet of the 2025-time frame after current active and passive safety countermeasures are fully implemented. Our assumption was that, by 2025, all new vehicles will have side impact passive safety performance equivalent to current U.S. NCAP five star ratings. The analysis was based on real-world crashes extracted from case years 2010-2015 in the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) in which front-row occupants of late-model vehicles (Model Year 2011+) were exposed to a near-side crash.
Journal Article

Frontal Crash Protection in Pre-1998 Vehicles versus 1998 and Later Vehicles

2010-04-12
2010-01-0142
This investigation addresses and evaluates: (1) belted drivers in frontal crashes; (2) crashes divided into low, medium, and high severity; (3) air-bag-equipped passenger vehicles separated into either model years 1985 - 1997 (with airbags) or model years 1998 - 2008; (4) rate of Harm as a function of crash severity and vehicle model year; and (5) injury patterns associated with injured body regions and the involved physical components, by vehicle model year. Comparisons are made between the injury patterns related to drivers seated in vehicles manufactured before 1998 and those manufactured 1998 or later. The purpose of this comparative analysis is to establish how driver injury patterns may have changed as a result of the introduction of more recent safety belt technology, advanced airbags, or structural changes.
Journal Article

Fire Occurrence in Side Crashes Based on NASS/CDS

2009-04-20
2009-01-0008
The basis for this analysis was NASS/CDS 1997 to 2006. In the NASS database there were 60 cases with major fires in side impact crashes, 37 of which were in passenger vehicles less than 10 years old. These newer vehicles were examined in this study. Cases in NASS were examined to identify crash characteristics associated with major fires in side crashes. The database contained 22 cases with fatalities, eleven of which were coded as fire related. Three of these were associated with fires that did not originate from the crashed vehicle. The fuel tank was coded as the fire origin for 41% of the major fires in vehicles with side damage and for 7 out of the 8 vehicles with fire related fatalities. The most frequent crash characteristic was an impact with a narrow object that produced severe side damage. Lower extent of damage was evident in two fatal cases that involved a rollover following the side impact.
Technical Paper

Injury Mechanism of the Head and Face of Children in Side Impacts

2009-04-20
2009-01-1434
This study assessed the primary involved physical components attributed to the head and face injuries of child occupants seated directly adjacent to the stuck side of a vehicle in a side impact collision. The findings presented in this study were based upon analysis of the National Automotive Sampling System/Crashworthiness Data System (NASS/CDS) for the years 1993–2007. Injury analysis was conducted for those nearside child occupants aged between 1–12 years-old. The involved children were classified as toddler-type, booster-type, or belted-type occupants. These classifications were based upon the recommended restraint system for the occupant. Injury mechanisms were assessed for the child occupants in each of the three groups. A detailed study of NASS/CDS cases was conducted to provide a greater understanding of the associated injury mechanisms.
Technical Paper

Mechanisms of Traumatic Rupture of the Aorta and Associated Peri-isthmic Motion and Deformation

2008-11-03
2008-22-0010
This study investigated the mechanisms of traumatic rupture of the aorta (TRA). Eight unembalmed human cadavers were tested using various dynamic blunt loading modes. Impacts were conducted using a 32-kg impactor with a 152-mm face, and high-speed seatbelt pretensioners. High-speed biplane x-ray was used to visualize aortic motion within the mediastinum, and to measure deformation of the aorta. An axillary thoracotomy approach was used to access the peri-isthmic region to place radiopaque markers on the aorta. The cadavers were inverted for testing. Clinically relevant TRA was observed in seven of the tests. Peak average longitudinal Lagrange strain was 0.644, with the average peak for all tests being 0.208 ± 0.216. Peak intraluminal pressure of 165 kPa was recorded. Longitudinal stretch of the aorta was found to be a principal component of injury causation. Stretch of the aorta was generated by thoracic deformation, which is required for injury to occur.
Technical Paper

Occupant-to-Occupant Interaction and Impact Injury Risk in Side Impact Crashes

2008-11-03
2008-22-0013
To date, efforts to improve occupant protection in side impact crashes have concentrated on reducing the injuries to occupants seated on the struck side of the vehicle arising from contact with the intruding side structure and/or external objects. Crash investigations indicate that occupants on the struck side of a vehicle may also be injured by contact with an adjacent occupant in the same seating row. Anecdotal information suggests that the injury consequences of occupant-to-occupant impacts can be severe, and sometimes life threatening. Occupant-to-occupant impacts leave little evidence in the vehicle, and hence these impacts can be difficult for crash investigators to detect and may be underreported. The objective of this study was to evaluate the risk of impact injury from occupant-to-occupant impacts in side impact vehicle crashes. The study examined 9608 crashes extracted from NASS/CDS 1993-2006 to investigate the risk of occupant-to-occupant impacts.
Journal Article

Fire Occurrence in Frontal Crashes Based on NASS/CDS

2008-04-14
2008-01-0256
The basis for this analysis was FARS 1979 to 2005 and NASS/CDS 1997 to 2004. For these years, there were 12,493 cases in FARS where fire was coded as the most harmful event. In NASS there were 227 cases with major fires, 87 of which were in frontal crashes. The paper shows the annual trends in FARS with regard to overall fatalities and fatalities with fire as the most harmful event by direction of principal vehicle damage. The NASS/CDS files are used to determine the location of fire origin. The FARS data show that crashes with frontal damage are the most frequent crash types where fire is the most harmful event. In general, the most harmful event fire rates have declined with the overall fatality rates in FARS. However, in recent years the trend in fires with frontal damage has been on the increase. Cases in NASS were examined to identify patterns for major fires in frontal crashes. Engine compartment fires were by far the most frequent.
Technical Paper

Neck Pendulum Test Modifications for Simulation of Frontal Crashes

2008-04-14
2008-01-0518
Pediatric Anthropomorphic Test Devices (ATDs) are valuable tools for assessing the injury mitigation capability of automotive safety systems. The neck pendulum test is widely used in biofidelity assessment and calibration of the ATD neck, and neck moment vs. angle response requirements are the metrics typically derived from the test. Herein, we describe the basis and methods for modifying the neck pendulum such that it more closely reflects base of the neck accelerations observed by a restrained three-year old ATD in a frontal crash. As a measure of base of the neck acceleration, the x-direction chest acceleration from thirty-one restrained Hybrid III three-year-old ATDs in vehicle frontal crash tests were analyzed. The standard neck pendulum yielded a mean peak acceleration that is 1.2x the peak of vehicle base of the neck accelerations, 1.6x the average, and 0.24x the duration.
Technical Paper

Severe Head and Neck Injuries in NASS Rear Impacts

2008-04-14
2008-01-0190
In this paper the characteristics of rear impact crashes are examined. General information about rear impact collisions is derived from recent data from the National Automotive Sampling System, General Estimates System (NASS/GES) and Fatality Analysis Reporting System (FARS) as reported in the annual National Highway Traffic Safety Administration (NHTSA) Traffic Safety Facts. Additional details about the frequency, severity, type, and cause of injuries to front seat outboard occupants is analyzed using the National Automotive Sampling System, Crashworthiness Data System (NASS/CDS) data from 1997 to 2005. Serious head and neck injuries are focused on for further analysis. Specific cases from the CDS database that meet this classification are examined. Federal Motor Vehicle Safety Standard (FMVSS) 301-R test data is used to analyze occupant, seat, and vehicle kinematics in single impact rear collisions and to look at the occupant rebound velocity.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2012-01-1537
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2007-22-0014
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Using Forefoot Acceleration to Predict Forefoot Trauma in Frontal Crashes

2007-04-16
2007-01-0704
A common injury type among foot and ankle injury is the Lisfranc trauma, or injury to the forefoot. The Lisfranc injury indicates abnormal alignment of the tarsal-metatarsal joints with the loss of their normal spatial relationships. In 2003, Smith completed a laboratory study of this injury mechanism at Wayne State University [1, 2]. He found Lisfranc trauma was correlated with impact force to the forefoot. He proposed a probability of injury function that is based on the applied force to the forefoot. This study examined the instrumentation in the foot of the dummies in the USA New Car Assessment Program (NCAP) and Insurance Institute of Highway Safety (IIHS) frontal crashes. Nineteen different passenger vehicles representing four different vehicle classes were selected based mostly on a large presence in the USA vehicle fleet. Both NCAP and IIHS crashed these nineteen makes and models.
Technical Paper

Recent MVFRI Research in Crash-Induced Vehicle Fire Safety

2007-04-16
2007-01-0880
The research reported in this paper is a follow-on to a five year research program conducted by General Motors in accordance with an administrative Settlement Agreement reached with the US Department of Transportation. This paper is the fourth in a series of technical papers intended to disseminate the results of the ongoing research [Digges 2004, 2005, 2006]. This paper summarizes progress in several of the projects to better understand the crash factors that are associated with crash induced fires. Part I of the paper presents the distribution of fire cases in NASS/CDS by damage severity and injury severity. It also examines the distributions by crash mode, fire origin, and fuel leakage location. The distributions of cases with fires and entrapment are also examined. Part II of the paper provides summaries of recent projects performed by MVFRI contractors. Technologies to reduce fuel leakage from siphoning and rollover are documented.
Technical Paper

Opportunities for Reducing Casualties in Far-side Crashes

2006-04-03
2006-01-0450
This paper uses the National Automotive Sampling System/Crashworthiness Data System (NASS/CDS) to estimate the population of front seat occupants exposed to far-side crashes and those with MAIS 3+ and fatal injuries. Countermeasures applicable to far-side planar crashes may also have benefits in some far-side rollovers. The near-side and far-side rollover populations with MAIS 3+ injuries and fatalities are also calculated and reported. Both restrained and unrestrained occupants are considered. Populations are subdivided according to ejection status – not ejected, full ejection, partial ejection and unknown ejection. Estimates are provided for the annual number of MAIS 3+ injuries and fatalities that occur each year in each category for the following belt use scenarios: (1) belt use as reported in NASS and (2) 100% belt use. In scenario 1, the exposure and casualties for the unbelted population are also shown. About 34% of the MAIS 3+F injuries in side crashes are in far-side crashes.
Technical Paper

Side Impact Injury Risk for Belted Far Side Passenger Vehicle Occupants

2005-04-11
2005-01-0287
In a side impact, the occupants on both the struck, or near side, of the vehicle and the occupants on the opposite, or far side, of the vehicle are at risk of injury. Since model year 1997, all passenger cars in the U.S. have been required to comply with FMVSS No. 214, a safety standard that mandates a minimum level of side crash protection for near side occupants. No such federal safety standard exists for far side occupants. The mechanism of far side injury is believed to be quite different than the injury mechanism for near side injury. Far side impact protection may require the development of different countermeasures than those which are effective for near side impact protection. This paper evaluates the risk of side crash injury for far side occupants as a basis for developing far side impact injury countermeasures. Based on the analysis of NASS/CDS 1993–2002, this study examines the injury outcome of over 4500 car, light truck, and van occupants subjected to far side impact.
Technical Paper

Crash Simulations to Understand Injury Mechanisms in Maneuver Induced Rollover Crashes

2004-03-08
2004-01-0330
Real world crashes in NASS/CDS 1997 to 2000 were examined individually in order to find patterns in single vehicle rollover crashes. Typical maneuver induced rollovers of SUV's were reconstructed using the HVE model. From HVE and roll event reconstructions, the values of longitudinal, lateral, and vertical displacement, and roll, pitch, and yaw angle, for the pre-roll and rollover event were calculated. These values were used as inputs to a MADYMO model for simulated vehicle motion to predict occupant kinematics. Both near-side and far-side rollovers were simulated. The MADYMO model provided estimates of head velocity for the various rollover scenarios for a belted driver. In both near-side and far-side rollovers of the type reconstructed, the lateral component of head velocity was the greatest. Maximum head velocities of 5.3 m/s were predicted. The simulations were for two complete rollovers. The highest head velocity occurred during the first three quarter turns.
Technical Paper

Crash Severity: A Comparison of Event Data Recorder Measurements with Accident Reconstruction Estimates

2004-03-08
2004-01-1194
The primary description of crash severity in most accident databases is vehicle delta-V. Delta-V has been traditionally estimated through accident reconstruction techniques using computer codes, e.g. Crash3 and WinSmash. Unfortunately, delta-V is notoriously difficult to estimate in many types of collisions including sideswipes, collisions with narrow objects, angled side impacts, and rollovers. Indeed, approximately 40% of all delta-V estimates for inspected vehicles in the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) 2001 are reported as unknown. The Event Data Recorders (EDRs), now being installed as standard equipment by several automakers, have the potential to provide an independent measurement of crash severity which avoids many of the difficulties of accident reconstruction techniques. This paper evaluates the feasibility of replacing delta-V estimates from accident reconstruction with the delta-V recorded by EDRs.
Technical Paper

The Evolution of Side Crash Compatibility Between Cars, Light Trucks and Vans

2003-03-03
2003-01-0899
Several research studies have concluded that light trucks and vans (LTVs) are incompatible with cars in traffic collisions. These studies have noted that crash incompatibility is most severe in side crashes. These early research efforts however were conducted before complete introduction of crash injury countermeasures such as dynamic side impact protection. Based upon U.S. traffic accident statistics, this paper investigates the side crash compatibility of late model cars, light trucks and vans equipped with countermeasures designed specifically to provide side crash protection. The paper explores both LTV-to-car crash compatibility and crash incompatibility in car-to-car collisions.
Technical Paper

Occupant Injury Patterns in Side Crashes

2001-03-05
2001-01-0723
This paper presents an analysis of the National Automotive Sampling System (NASS) and the Fatal Accident Reporting Systems (FARS) data for the combined years 1988–97 with respect to side impacts. Accident variables, vehicle variables, occupant variables and their interactions have been considered, with special emphasis on occupant injury patterns. The crash modes considered are car-to-car, car-to-LTV (light trucks and vans) and car to narrow object, with special emphasis on the latter two. This study was undertaken to obtain a better understanding of injury patterns in lateral impacts, their associated causation factors, and to obtain information that will assist in prioritizing crash injury research problems in near side impacts. Of particular interest is the increase in the population of light trucks and vans and their influence on side impact priorities. Conclusions will be drawn regarding the frequency and injury severity of car-to-LTV’s and car to narrow objects.
Technical Paper

Investigating Ankle Injury Mechanisms in Offset Frontal Collisions Utilizing Computer Modeling and Case-Study Data

1999-10-10
99SC14
A significant number of documented ankle injuries incurred in automobile accidents indicate some form of lateral loading is present to either cause or influence injury. A high percentage of these cases occur in the absence of occupant compartment intrusion. To date, no specific ankle injury mechanism has been identified to explain these types of injuries. To investigate this problem, several resources were used including full-scale crash test data, finite element models, and case study field data. Results from car-to-car, offset frontal crash tests indicate a significant lateral acceleration (10-18 g) occurs at the same time as the peak in longitudinal acceleration. The combined loading condition results in a significant lateral force being applied to the foot-ankle region while the leg region is under maximum compression.
X