Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Seals and Sealing System Design of Actuation Systems in Military and Commercial Aircraft

This half day course presents an overview of seals and sealing system design for military and commercial aircraft. It is aimed to provide engineers having some previous actuator and control valve design background with an understanding of the general hardware groove standards, standard parts for static applications and how seal designs and sealing systems can be best used in dynamic reciprocating and rotary applications. Information will be provided regarding seal material and fluid compatibility, friction drag, expected wear rates depending on operating conditions and duty cycle, hardware surface finish and topography.
Training / Education

Electrohydraulic Servovalves in Flight Control and Utility Actuators

This four-hour short course intends to present an overview of electrohydraulic flow control servovalves commonly used in flight control and utility actuators. The scope of this course covers the history and design of servovalves, as well as their most common performance characteristics. This course will provide participants an understanding of the application of electrohydraulic servovalves in hydraulically powered actuators and preparation of the servovalve procurement specification.
Training / Education

Filtration and Contamination Control for Aerospace Hydraulic Systems

This four-hour short course provides an introduction to contamination control principles in aircraft hydraulic systems. Topics covered include an introduction to the types of contamination in aircraft hydraulic systems, contaminant measurement, and reporting methods. In addition, the impact of contamination on hydraulic components is discussed in detail. Along with an introduction to filtration mechanisms, information on testing, rating, and specifying filters will be provided.
Training / Education

Introduction to Aircraft Hydraulic System Design and Certification

This four-hour short course provides an overview of hydraulic system design of typical business and commercial aircraft. Topics will include the principles, system architectures, power sources, and the main components and technologies of hydraulic systems including hydraulic power generation, filtration, fluid storage, distribution, sensing and control. The step by step process of designing a hydraulic system will also be reviewed. Additionally, future trends in hydraulic systems will be discussed.
Training / Education

Design Considerations for Electrohydrostatic Actuators

This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. This four-hour short course will provide an overview of design considerations for electrohydrostatic actuation for transport and business aircraft applications.  The instructor will present the critical topics of electrohydrostatic actuation (EHA) from a systems development perspective (V-Approach).  Beginning with aircraft system requirements, the instructors will then guide participants through EHA subsystem requirements, component design, component verification test, aircraft integration, and use. 
Training / Education

Key Considerations for the Comparison of Power‐by‐Wire and Hydraulically Supplied Solutions for Aerospace Actuation

This four-hour short course provides key considerations for the comparison of electrically supplied (Power-by-Wire, or PbW) and hydraulically supplied (Power-by-Pipe, of PbP) actuation for aerospace. The focus is put on the consequence, for designers, of changing the physical principles and the technology used. A particular attention is paid to the unavoidable side effects introduced by the technological realization. Simple examples with realistic numerical values are used to make the comparisons quantitatively realistic.
Training / Education

Fluids for Aerospace Hydraulic Systems

This four-hour short course provides an introduction to fluids for aerospace hydraulic systems. Topics covered include an introduction to basics fluid properties, rheology, tribology, and fluid product development. In addition, the history and performance of different classes of fluids are discussed in detail, and specific failure modes such as erosion and sludge formation will be described. Along with an introduction to fluid degradation, information on used oil analysis test methods and interpretation will be provided.
Training / Education

Power Electronics for Mechanical Engineers

This 4-hour short course provides an overview of Power Electronics (PE) in use in modern transport aircraft. This course includes the context, principles, design drivers, and the main PE components of various flight applications, including those for harsh environments. This course is designed to deliver and demystify the basic theories and best practices of mechanical, electronics, thermal management, safety, reliability and maintainability disciplines. In addition, future trends in Power Electronics will be discussed.
Training / Education

Aircraft Hydraulic Pumps and Motors - Application, Design and Integration

This 4-hour short course offers an overview of aircraft hydraulic pumps focusing on their application in hydraulic systems, design and performance characteristics, and integration issues. These topics will examine the various pump technologies available for aircraft system applications, their design, performance and operational characteristics and limitations, and discusses the challenges and lessons learned in the integration of pumps in hydraulic systems.
Training / Education

Design Considerations for Electromechanical Flight Control Actuation Systems

This four-hour short course intends to present an overview of electrically powered flight control actuation systems, covering commercial applications. The scope covers issues related to the mechanical design of actuators themselves, with limited reference to their control electronics. Additionally, this course will provide participants an understanding of the design considerations behind these actuation systems.
Video

Vertical Picture-Frame Wing Jig Structure Design with an Eye to Foundation Loading

2012-03-14
The foundation of many production aircraft assembly facilities is a more dynamic and unpredictable quantity than we would sometimes care to admit. Any tooling structures constructed on these floors, no matter how thoroughly analyzed or well understood, are at the mercy of settling and shifting concrete, which can cause very lengthy and costly periodic re-certification and adjustment procedures. It is with this in mind, then, that we explore the design possibilities for one such structure to be built in Belfast, North Ireland for the assembly of the Shorts C-Series aircraft wings. We evaluate the peak floor pressure, weight, gravity deflection, drilling deflection, and thermal deflection of four promising structures and discover that carefully designed pivot points and tension members can offer significant benefits in some areas.
Journal Article

High Power-Density, High Efficiency, Mechanically Assisted, Turbocharged Direct-Injection Jet-Ignition Engines for Unmanned Aerial Vehicles

2019-05-02
Abstract More than a decade ago, we proposed combined use of direct injection (DI) and jet ignition (JI) to produce high efficiency, high power-density, positive-ignition (PI), lean burn stratified, internal combustion engines (ICEs). Adopting this concept, the latest FIA F1 engines, which are electrically assisted, turbocharged, directly injected, jet ignited, gasoline engines and work lean stratified in a highly boosted environment, have delivered peak power fuel conversion efficiencies well above 46%, with specific power densities more than 340 kW/liter. The concept, further evolved, is here presented for unmanned aerial vehicle (UAV) applications. Results of simulations for a new DI JI ICE with rotary valve, being super-turbocharged and having gasoline or methanol as working fuel, show the opportunity to achieve even larger power densities, up to 430 kW/liter, while delivering a near-constant torque and, consequently, a nearly linear power curve over a wide range of speeds.
Journal Article

Process Regulations and Mechanism of WEDM of Combustor Material

2019-06-07
Abstract This study discusses the experimental investigation on WEDM of combustor material (i.e., nimonic 263). Experimentation has been executed by varying pulse-on time (Ton), pulse-off time (Toff), peak current (Ip), and spark gap voltage (Sv). Material removal rate (MRR), surface roughness (SR), and wire wear rate (WWR) are employed as process performance characteristics. Experiments are designed as per the box-Behnken design technique. Parametric optimization has also been performed using response surface methodology. Besides this, field-emission scanning electron microscope (FE-SEM) and an optical microscope are utilized to characterize WEDMed and worn-out wire surfaces. It is observed that both surfaces contain micro-cracks, craters, spherical droplets, and a lump of debris. Furthermore, the mechanism of recast layer formation has been critically evaluated to apprehend a better understanding of the technique. The key features of the experimental procedure are also highlighted.
Journal Article

Mathematical Model of Heat-Controlled Accumulator (HCA) for Microgravity Conditions

2020-01-20
Abstract It is reasonable to use a two-phase heat transfer loop (TPL) in a thermal control system (TCS) of spacecraft with large heat dissipation. One of the key elements of TPL is a heat-controlled accumulator (HCA). The HCA represents a volume which is filled with vapor and liquid of a single working fluid without bellows. The pressure in a HCA is controlled by the heater. The heat and mass transfer processes in the HCA can proceed with a significant nonequilibrium. This has implications on the regulation of TPL. This article presents a mathematical model of nonequilibrium heat and mass transfer processes in an HCA for microgravity conditions. The model uses the equations of mass and energy conservation separately for the vapor and liquid phases. Interfacial heat and mass transfer is also taken into account. It proposes to use the convective component k for the level of nonequilibrium evaluation.
Journal Article

Using Numerical Simulation to Obtain Length of Constant Area Section in Scramjet Combustor

2020-03-16
Abstract Constant area section length downstream to the fuel injection point is a crucial dimension of scramjet duct geometry. It has a major contribution in creating the maximum effective pressure inside the combustor that is required for propulsion. The length is limited by the thermal choking phenomenon, which occurs when heat is added in a flow through constant area duct. As per theory, to avoid thermal choking the constant area section length depends upon the inlet conditions and the rate of heat addition. The complexity related to mixing and combustion process inside the supersonic stream makes it difficult to predict the rate of heat addition and in turn the length. Recent efforts of simulating the reacting flow inside scramjet combustors are encouraging and can be useful in this regard. The presented work attempts to use simulation results of scramjet combustion for predicting the constant area section length for a typical scramjet combustor.
Journal Article

Critical Inlet Pressure Prediction for Inline Piston Pumps Using Multiphase Computational Fluid Dynamics Modelling

2021-02-15
Abstract Inline piston pumps are extensively used in aircraft hydraulic systems. They can be found in engine-driven large-sized hydraulic pumps and zonal electric motor-driven mid-small sized pumps. Inline piston pumps are positive displacement pumps with variable volumetric flow controls. Positive displacement pumps can provide a variable flow rate over a wide range of suction pressures. Aircraft fly at high altitudes, and therefore these pumps have to work in extreme conditions such as low atmospheric pressure, low temperature. At low inlet pressures, the pump is highly susceptible to cavitation, i.e., insufficient filling capacity. The pressure below which pump flow rate drops drastically is known as critical inlet pressure. Extensive research has been carried out to study cavitation in inline piston pumps.
Journal Article

Semi-empirical Combustion Efficiency Prediction of an Experimental Air-Blasted Tubular Combustor

2020-10-19
Abstract The preliminary gas turbine combustor design process uses a huge amount of empirical correlations to achieve more optimized designs. Combustion efficiency, in relation to the basic dimensions of the combustor, is one of the most critical performance parameters. In this study, semi-empirical correlations for combustion efficiencies are examined and correlation coefficients have been revised using an experimental air-blasted tubular combustor that uses JP8 kerosene aviation fuel. Besides, droplet diameter and effective evaporation constant parameters have been investigated for different operating conditions. In the study, it is observed that increased air velocity significantly improves the atomization process and decreases droplet diameters, while increasing the mass flow rate has a positive effect on the atomization—the relative air velocity in the air-blast atomizer increases and the fuel droplets become finer.
Standard

Special Considerations for the Application of IVHM to Autonomous Aircraft and Vehicles

2022-04-11
WIP
JA7214
This SAE Aerospace Recommended Practice (ARP) provides guidance to develop and assure validation and verification of IVHM systems used in autonomous aircraft, vehicles and driver assistance functions. IVHM covers a vehicle, monitoring and data processing functions inherent within its sub-systems, and the tools and processes used to manage and restore the vehicle’s health. The scope of this document is to address challenges and identify recommendations for the application of integrated vehicle health management (IVHM) specifically to intelligent systems performing tasks autonomously within the mobility sector. This document will focus on the core aspects of IVHM for autonomous vehicles that are common to both aerospace and automotive applications. It is anticipated that additional documents will be developed separately to cover aspects of this functionality that are unique to each application domain.
Standard

Information Guide for Electric Motors which Drive Hydraulic Pumps

2016-04-25
WIP
AIR6855
This document provides an application guide for electric motors that drive aerospace hydraulic pumps. It provides details of the characteristics of electric motors powered by DC, Fixed Frequency AC, and Variable Frequency AC electrical systems. The applications include both military and commercial aircraft.
X