Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Teardown-Based Cost Assessment for Use in Setting Greenhouse Gas Emissions Standards

2012-06-18
The U.S. Environmental Protection Agency (EPA) contracted with FEV, Inc. to estimate the per-vehicle cost of employing selected advanced efficiency-improving technologies in light-duty motor vehicles. The development of transparent, reliable cost analyses that are accessible to all interested stakeholders has played a crucial role in establishing feasible and cost effective standards to improve fuel economy and reduce greenhouse gas (GHG) emissions. The FEV team, together with engineering staff from EPA's National Vehicle and Fuel Emissions Laboratory, and FEV's subcontractor, Munro & Associates, developed a robust costing methodology based on tearing down, to the piece part level, relevant systems, sub-systems, and assemblies from vehicles ?with and without? the technologies being evaluated.
Journal Article

CO Emission Model for an Integrated Diesel Engine, Emissions, and Exhaust Aftertreatment System Level Model

2009-04-20
2009-01-1511
A kinetic carbon monoxide (CO) emission model is developed to simulate engine out CO emissions for conventional diesel combustion. The model also incorporates physics governing CO emissions for low temperature combustion (LTC). The emission model will be used in an integrated system level model to simulate the operation and interaction of conventional and low temperature diesel combustion with aftertreatment devices. The Integrated System Model consists of component models for the diesel engine, engine-out emissions (such as NOx and Particulate Matter), and aftertreatment devices (such as DOC and DPF). The addition of CO emissions model will enhance the capability of the Integrated System Model to predict major emission species, especially for low temperature combustion. In this work a CO emission model is developed based on a two-step global kinetic mechanism [8].
Journal Article

Determination of PEMS Measurement Allowances for Gaseous Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program Part 3 – Results and Validation

2009-04-20
2009-01-0938
Beginning in 2007, heavy-duty engine manufacturers in the U.S. have been responsible for verifying the compliance on in-use vehicles with Not-to-Exceed (NTE) standards under the Heavy-Duty In-Use Testing Program (HDIUT). This in-use testing is conducted using Portable Emission Measurement Systems (PEMS) which are installed on the vehicles to measure emissions during real-world operation. A key component of the HDIUT program is the generation of measurement allowances which account for the relative accuracy of PEMS as compared to more conventional, laboratory based measurement techniques. A program to determine these measurement allowances for gaseous emissions was jointly funded by the U.S. Environmental Protection Agency (EPA), the California Air Resources Board (CARB), and various member companies of the Engine Manufacturer's Association (EMA).
Journal Article

Effect of Mesh Structure in the KIVA-4 Code with a Less Mesh Dependent Spray Model for DI Diesel Engine Simulations

2009-06-15
2009-01-1937
Two different types of mesh used for diesel combustion with the KIVA-4 code are compared. One is a well established conventional KIVA-3 type polar mesh. The other is a non-polar mesh with uniform size throughout the piston bowl so as to reduce the number of cells and to improve the quality of the cell shapes around the cylinder axis which can contain many fuel droplets that affect prediction accuracy and the computational time. This mesh is specialized for the KIVA-4 code which employs an unstructured mesh. To prevent dramatic changes in spray penetration caused by the difference in cell size between the two types of mesh, a recently developed spray model which reduces mesh dependency of the droplet behavior has been implemented. For the ignition and combustion models, the Shell model and characteristic time combustion (CTC) model are employed.
Journal Article

Use of Low-Pressure Direct-Injection for Reactivity Controlled Compression Ignition (RCCI) Light-Duty Engine Operation

2013-04-08
2013-01-1605
Reactivity-controlled compression ignition (RCCI) has been shown to be capable of providing improved engine efficiencies coupled with the benefit of low emissions via in-cylinder fuel blending. Much of the previous body of work has studied the benefits of RCCI operation using high injection pressures (e.g., 500 bar or greater) with common rail injection (CRI) hardware. However, low-pressure fueling technology is capable of providing significant cost savings. Due to the broad market adoption of gasoline direct injection (GDI) fueling systems, a market-type prototype GDI injector was selected for this study. Single-cylinder light-duty engine experiments were undertaken to examine the performance and emissions characteristics of the RCCI combustion strategy with low-pressure GDI technology and compared against high injection pressure RCCI operation. Gasoline and diesel were used as the low-reactivity and high-reactivity fuels, respectively.
Journal Article

Modeling and Validation of 48V Mild Hybrid Lithium-Ion Battery Pack

2018-04-03
2018-01-0433
As part of the midterm evaluation of the 2022-2025 Light-Duty Vehicle Greenhouse Gas (GHG) Standards, the U.S. Environmental Protection Agency (EPA) developed simulation models for studying the effectiveness of 48V mild hybrid electric vehicle (MHEV) technology for reducing CO2 emissions from light-duty vehicles. Simulation and modeling of this technology requires a suitable model of the battery. This article presents the development and validation of a 48V lithium-ion battery model that will be integrated into EPA’s Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model and that can also be used within Gamma Technologies, LLC (Westmont, IL) GT-DRIVE™ vehicle simulations. The battery model is a standard equivalent circuit model with the two-time constant resistance-capacitance (RC) blocks.
Technical Paper

An Experimentally Based Statistical Model for Predicting Motorcycle Shift Patterns

2020-04-14
2020-01-1046
Emissions from manual transmission motorcycles have been shown to be dependent upon transmission shift patterns. Presently, when undergoing an emission test for an Environmental Protection Agency (EPA) certification a manufacturer can designate their own shift points during the cycle or utilize an EPA prescribed shift pattern which uses basic up or down shifts at specific speeds regardless of the type of motorcycle, 40 CFR 86.528-78(h). In order to predict the real-life emissions from motorcycles, a comparative real-life shift pattern has been developed which can then be used to evaluate the suitability of the manufacturer’s shift schedule. To that end, a model that predicts shift points for motorcycles has been created. This model is based on the actual operation of different motorcycles by real life operators in a combined city and highway setting.
Journal Article

Comparative Study on Various Methods for Measuring Engine Particulate Matter Emissions

2008-06-23
2008-01-1748
Studies have shown that there are a significant number of chemical species present in engine exhaust particulate matter emissions. Additionally, the majority of current world-wide regulatory methods for measuring engine particulate emissions are gravimetrically based. As modern engines considerably reduce particulate mass emissions, these methods become less stable and begin to display higher levels of measurement uncertainty. In this study, a characterization of mass emissions from three heavy-duty diesel engines, with a range of particulate emission levels, was made in order to gain a better understanding of the variability and uncertainty associated with common mass measurement methods, as well as how well these methods compare with each other. Two gravimetric mass measurement methods and a reconstructed mass method were analyzed as part of the present study.
Journal Article

Pathline Analysis of Full-cycle Four-stroke HCCI Engine Combustion Using CFD and Multi-Zone Modeling

2008-04-14
2008-01-0048
This paper investigates flow and combustion in a full-cycle simulation of a four-stroke, three-valve HCCI engine by visualizing the flow with pathlines. Pathlines trace massless particles in a transient flow field. In addition to visualization, pathlines are used here to trace the history, or evolution, of flow fields and species. In this study evolution is followed from the intake port through combustion. Pathline analysis follows packets of intake charge in time and space from induction through combustion. The local scalar fields traversed by the individual packets in terms of velocity magnitude, turbulence, species concentration and temperatures are extracted from the simulation results. The results show how the intake event establishes local chemical and thermal environments in-cylinder and how the species respond (chemically react) to the local field.
Journal Article

Detailed Effects of a Diesel Particulate Filter on the Reduction of Chemical Species Emissions

2008-04-14
2008-01-0333
Diesel particulate filters are designed to reduce the mass emissions of diesel particulate matter and have been proven to be effective in this respect. Not much is known, however, about their effects on other unregulated chemical species. This study utilized source dilution sampling techniques to evaluate the effects of a catalyzed diesel particulate filter on a wide spectrum of chemical emissions from a heavy-duty diesel engine. The species analyzed included both criteria and unregulated compounds such as particulate matter (PM), carbon monoxide (CO), hydrocarbons (HC), inorganic ions, trace metallic compounds, elemental and organic carbon (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and other organic compounds. Results showed a significant reduction for the emissions of PM mass, CO, HC, metals, EC, OC, and PAHs.
Journal Article

Ring Pack Crevice Effects on the Hydrocarbon Emissions from an Air-Cooled Utility Engine

2008-09-09
2008-32-0004
The effect of the ring pack storage mechanism on the hydrocarbon (HC) emissions from an air-cooled utility engine has been studied using a simplified ring pack model. Tests were performed for a range of engine load, two engine speeds, varied air-fuel ratio and with a fixed ignition timing using a homogeneous, pre-vaporized fuel mixture system. The integrated mass of HC leaving the crevices from the end of combustion (the crank angle that the cumulative burn fraction reached 90%) to exhaust valve closing was taken to represent the potential contribution of the ring pack to the overall HC emissions; post-oxidation in the cylinder will consume some of this mass. Time-resolved exhaust HC concentration measurements were also performed, and the instantaneous exhaust HC mass flow rate was determined using the measured exhaust and cylinder pressure.
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Journal Article

Cu-Zeolite SCR Catalyst Thermal Deactivation Studied with FTIR Spatial Resolution

2011-04-12
2011-01-1138
The performance of a commercial Cu-zeolite SCR catalyst after differing degrees of hydrothermal aging (aged for 72 hours at 500, 700 and 800°C with 10% moisture balanced with air) was studied by spatially resolving different key reactions using gas-phase FTIR measurements. Gases were sampled along a channel at different positions and analyzed using FTIR, which overcomes the interference of water and nitrogen on ammonia concentration detection encountered in standard mass spectrometer-based spatial resolution measurements. The NO:NO₂ concentration ratio was changed so that the standard (NO:NO₂ = 1:0), fast (NO:NO₂ = 1:1) and NO₂ (NO:NO₂ = 0:1) SCR reactions could be investigated as a function of the catalyst's hydrothermal aging extent. In addition, the effects of hydrothermal aging on the activity of NH₃ and NO oxidation were also investigated. Hydrothermal aging had little effect on NO oxidation activity.
Journal Article

Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

2012-04-16
2012-01-1131
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline injected using a triple-pulse strategy in the low temperature combustion (LTC) regime is presented. This work aims to extend the operation ranges for a light-duty diesel engine, operating on gasoline, that have been identified in previous work via extended controllability of the injection process. The single-cylinder engine (SCE) was operated at full load (16 bar IMEP, 2500 rev/min) and computational simulations of the in-cylinder processes were performed using a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion chosen to match ignition characteristics of the gasoline fuel used for the SCE experiments.
Journal Article

Heavy-Duty RCCI Operation Using Natural Gas and Diesel

2012-04-16
2012-01-0379
Many recent studies have shown that the Reactivity Controlled Compression Ignition (RCCI) combustion strategy can achieve high efficiency with low emissions. However, it has also been revealed that RCCI combustion is difficult at high loads due to its premixed nature. To operate at moderate to high loads with gasoline/diesel dual fuel, high amounts of EGR or an ultra low compression ratio have shown to be required. Considering that both of these approaches inherently lower thermodynamic efficiency, in this study natural gas was utilized as a replacement for gasoline as the low-reactivity fuel. Due to the lower reactivity (i.e., higher octane number) of natural gas compared to gasoline, it was hypothesized to be a better fuel for RCCI combustion, in which a large reactivity gradient between the two fuels is beneficial in controlling the maximum pressure rise rate.
Journal Article

Teardown-Based Cost Assessment for Use in Setting Greenhouse Gas Emissions Standards

2012-04-16
2012-01-1343
The U.S. Environmental Protection Agency (EPA) contracted with FEV, Inc. to estimate the per-vehicle cost of employing selected advanced efficiency-improving technologies in light-duty motor vehicles. The development of transparent, reliable cost analyses that are accessible to all interested stakeholders has played a crucial role in establishing feasible and cost effective standards to improve fuel economy and reduce greenhouse gas (GHG) emissions. The FEV team, together with engineering staff from EPA's National Vehicle and Fuel Emissions Laboratory, and FEV's subcontractor, Munro & Associates, developed a robust costing methodology based on tearing down, to the piece part level, relevant systems, sub-systems, and assemblies from vehicles “with and without” the technologies being evaluated.
Journal Article

Simultaneous Measurements of In-Cylinder Temperature and Velocity Distribution in a Small-Bore Diesel Engine Using Thermographic Phosphors

2013-04-08
2013-01-0562
In-cylinder temperature and velocity fields were quantified simultaneously in an optically accessible, small-bore diesel engine. A technique utilizing luminescence from Pr:YAG phosphor particles aerosolized into the intake air was used for temperature determination while particle image velocimetry (PIV) on the aforementioned phosphor particles was used to simultaneously measure the velocity field. The temperature and velocity fields were measured at different points throughout the compression stroke up to −30 CAD. Systematic interference due to emission from the piston window reduced the accuracy of the measurements at crank angles closer to TDC. Single-shot simultaneous measurements of the temperature and velocity fields were made using both unheated and heated intake temperatures. In both cases, cycle-to-cycle variations in the temperature and velocity fields were visible.
Technical Paper

Detection of Catalyst Failure On-Vehicle Using the Dual Oxygen Sensor Method

1991-02-01
910561
On-vehicle proof-of-concept testing was conducted to evaluate the ability of the dual oxygen sensor catalyst evaluation method to identify serious losses in catalyst efficiency under actual vehicle operating conditions. The dual oxygen sensor method, which utilizes a comparison between an upstream oxygen sensor and an oxygen sensor placed downstream of the catalyst, was initially studied by the Environmental Protection Agency (EPA) under steady-state operating conditions on an engine dynamometer and reported in Clemmens, et al. (1).* At the time that study was released, questions were raised as to whether the technological concepts developed on a test fixture could be transferred to a vehicle operating under normal transient conditions.
Technical Paper

Identifying Excess Emitters with a Remote Sensing Device: A Preliminary Analysis

1991-08-01
911672
There has been considerable interest in applying remote measuring methods to sample in-use vehicle emissions, and to characterize fleet emission behavior. A Remote Sensing Device (RSD) was used to measure on-road carbon monoxide (CO) emissions from approximately 350 in-use vehicles that had undergone transient mass emission testing at a centralized I/M lane. On-road hydrocarbon (HC) emissions were also measured by the RSD on about 50 of these vehicles. Analysis of the data indicates that the RSD identified a comparable number of the high CO emitters as the two speed I/M test only when an RSD cutpoint much more stringent than current practice was used. Both RSD and I/M had significant errors of omission in identifying High CO Emitters based on the mass emission test. The test data were also used to study the ability of the RSD to characterize fleet CO emissions.
Technical Paper

Evaluating Real-World Fuel Economy on Heavy Duty Vehicles using a Portable Emissions Measurement System

2006-10-31
2006-01-3543
Current SAE practices for evaluating potential improvements in fuel economy on heavy-duty vehicles rely on gravimetric measurements of fuel tanks. However, the recent evolution of portable emissions measurement systems (PEMS) offers an alternative means of evaluating real-world fuel economy that may be faster and more cost effective. This paper provides a direct comparison of these two methods based on a recent EPA study conducted at Southwest Research Institute. More than 228 on-road tests were performed on two pairs of class 8 tractor-trailers according to SAE test procedure J1321 in an assessment of various chassis components designed to reduce drag losses on the vehicle. During these tests, SEMTECH-D™ portable emissions measurement systems from Sensor's, Incorporated were operating in each of the vehicles to evaluate emissions and to provide a redundant measure of fuel economy.
X