Refine Your Search

Topic

Search Results

Journal Article

Simulation-based Assessment of Various Dual-Stage Boosting Systems in Terms of Performance and Fuel Economy Improvements

2009-04-20
2009-01-1471
Diesel engines have been used in large vehicles, locomotives and ships as more efficient alternatives to the gasoline engines. They have also been used in small passenger vehicle applications, but have not been as popular as in other applications until recently. The two main factors that kept them from becoming the major contender in the small passenger vehicle applications were the low power outputs and the noise levels. A combination of improved mechanical technologies such as multiple injection, higher injection pressure, and advanced electronic control has mostly mitigated the problems associated with the noise level and changed the public notion of the Diesel engine technology in the latest generation of common-rail designs. The power output of the Diesel engines has also been improved substantially through the use of variable geometry turbines combined with the advanced fuel injection technology.
Journal Article

Comparison of Different Boosting Strategies for Homogeneous Charge Compression Ignition Engines - A Modeling Study

2010-04-12
2010-01-0571
Boosted Homogeneous Charge Compression Ignition (HCCI) has been modeled and has demonstrated the potential to extend the engine's upper load limit. A commercially available engine simulation software (GT-PowerÖ) coupled to the University of Michigan HCCI combustion and heat transfer correlations was used to model a 4-cylinder boosted HCCI engine with three different boosting configurations: turbocharging, supercharging and series turbocharging. The scope of this study is to identify the best boosting approach in order to extend the HCCI engine's operating range. The results of this study are consistent with the literature: Boosting helps increase the HCCI upper load limit, but matching of turbochargers is a problem. In addition, the low exhaust gas enthalpy resulting from HCCI combustion leads to high pressures in the exhaust manifold increasing pumping work. The series turbocharging strategy appears to provide the largest load range extension.
Technical Paper

The Effects of Spray, Mixing, and Combustion Model Parameters on KIVA-II Predictions

1991-09-01
911785
The combustion process in a diesel engine was simulated using KIVA-II, a multi-dimensional computer code. The original combustion model in KIVA-II is based on chemical kinetics, and thus fails to capture the effects of turbulence on combustion. A mixing-controlled, eddy break-up combustion model was implemented into the code. Realistic diesel fuel data were also compiled. Subsequently, the sensitivity of the code to a number of parameters related to fuel injection, mixing, and combustion was studied. Spray injection parameters were found to have a strong influence on the model's predictions. Higher injection velocity and shorter injection duration result in a higher combustion rate and peak pressure and temperature. The droplet size specified at injection significantly affects the rate of spray penetration and evaporation, and thus the combustion rate. Contrary to expectation, the level of turbulence at the beginning of the calculation did not affect fuel burning rate.
Technical Paper

Implementation of a Fuel Spray Wall Interaction Model in KIVA-II

1991-09-01
911787
The original spray model in the KIVA-II code includes sub-models for drop injection, breakup, coalescence, and evaporation. Despite the sophisticated structure of the model, predicted spray behavior is not in satisfactory agreement with experimental results. Some of the discrepancies are attributed to the lack of a fuel jet wall impingement sub-model, a wall fuel layer evaporation sub-model, and uncertainties related to the choice of submodels parameters. A spray impingement model based on earlier research has been modified and implemented in KIVA-II. Heat transfer between the fuel layer on the piston surface and the neighboring gaseous charge has also been modelled based on the Colburn Analogy. A series of two dimensional simulations have been performed for a Caterpillar 1Y540 diesel engine to investigate droplet penetration, impingement, fuel evaporation, and chemical reaction, and the dependence of predictions on certain model parameters.
Technical Paper

Multi-Dimensional Modeling of Natural Gas Ignition Under Compression Ignition Conditions Using Detailed Chemistry

1998-02-23
980136
A detailed chemical kinetic mechanism, consisting of 22 species and 104 elementary reactions, has been used in conjunction with the multi-dimensional reactive flow code KIVA-3 to study autoignition of natural gas injected under compression ignition conditions. Calculations for three different blends of natural gas are performed on a three-dimensional computational grid by modeling both the injection and ignition processes. Ignition delay predictions at pressures and temperatures typical of top-dead-center conditions in compression ignition engines compare well with the measurements of Naber et al. [1] in a combustion bomb. Two different criteria, based on pressure rise and mass of fuel burned, are used to detect the onset of ignition. Parametric studies are conducted to show the effect of additives like ethane and hydrogen peroxide in increasing the fuel consumption rate.
Technical Paper

A Coupled Methodology for Modeling the Transient Thermal Response of SI Engines Subject to Time-Varying Operating Conditions

1997-05-19
971859
A comprehensive methodology for predicting the transient thermal response of spark-ignition engines subject to time-varying boundary conditions is presented. The approach is based on coupling a cycle-resolved quasi-dimensional simulation of in-cylinder thermodynamic events with a resistor-capacitor (R-C) thermal network of the various component and fluid interactions throughout the engine and exhaust system. The dynamic time step of the thermal solution is limited by either the frequency of the prescribed time-dependent boundary conditions or by the minimum thermal time constant of the R-C network. To demonstrate the need for fully-coupled, transient thermodynamic and heat transfer solutions, model behavior is first explored for step-change and staircase variations of engine operating conditions.
Technical Paper

Simultaneous Reduction of NOX and Soot in a Heavy-Duty Diesel Engine by Instantaneous Mixing of Fuel and Water

2007-04-16
2007-01-0125
Meeting diesel engine emission standards for heavy-duty vehicles can be achieved by simultaneous injection of fuel and water. An injection system for instantaneous mixing of fuel and water in the combustion chamber has been developed by injecting water in a mixing passage located in the periphery of the fuel spray. The fuel spray is then entrained by water and hot air before it burns. The experimental work was carried out on a Rapid Compression Machine and on a Komatsu direct-injection heavy-duty diesel engine with a high pressure common rail fuel injection system. It was also supported by Computational Fluid Dynamics simulations of the injection and combustion processes in order to evaluate the effect of water vapor distribution on cylinder temperature and NOX formation. It has been concluded that when the water injection is appropriately timed, the combustion speed is slower and the cylinder temperature lower than in conventional diesel combustion.
Technical Paper

Modeling HCCI Combustion With High Levels of Residual Gas Fraction - A Comparison of Two VVA Strategies

2003-10-27
2003-01-3220
Adjusting the Residual Gas Fraction (RGF) by means of Variable Valve Actuation (VVA) is a strong candidate for controlling the ignition timing in Homogeneous Charge Compression Ignition (HCCI) engines. However, at high levels of residual gas fraction, insufficient mixing can lead to the presence of considerable temperature and composition variations. This paper extends previous modeling efforts to include the effect of RGF distribution on the onset of ignition and the rate of combustion using a multi-dimensional fluid mechanics code (KIVA-3V) sequentially with a multi-zone code with detailed chemical kinetics. KIVA-3V is used to simulate the gas exchange processes, while the multi-zone code computes the combustion event. It is shown that under certain conditions the effect of composition stratification is significant and cannot be captured by a single-zone model or a multi-zone model using only temperature zones.
Technical Paper

Multi-Zone DI Diesel Spray Combustion Model for Cycle Simulation Studies of Engine Performance and Emissions

2001-03-05
2001-01-1246
A quasi-dimensional, multi-zone, direct injection (DI) diesel combustion model has been developed and implemented in a full cycle simulation of a turbocharged engine. The combustion model accounts for transient fuel spray evolution, fuel-air mixing, ignition, combustion and NO and soot pollutant formation. In the model, the fuel spray is divided into a number of zones, which are treated as open systems. While mass and energy equations are solved for each zone, a simplified momentum conservation equation is used to calculate the amount of air entrained into each zone. Details of the DI spray, combustion model and its implementation into the cycle simulation of Assanis and Heywood [1] are described in this paper. The model is validated with experimental data obtained in a constant volume chamber and engines. First, predictions of spray penetration and spray angle are validated against measurements in a pressurized constant volume chamber.
Technical Paper

Development of a Two-Zone HCCI Combustion Model Accounting for Boundary Layer Effects

2001-03-05
2001-01-1028
The Homogeneous Charge Compression Ignition (HCCI) combustion concept is currently under widespread investigation due to its potential to increase thermal efficiency while greatly decreasing harmful exhaust pollutants. Simulation tools have been developed to explore the implications of initial mixture thermodynamic state on engine performance and emissions. In most cases these modeling efforts have coupled a detailed fuel chemistry mechanism with empirical descriptions of the in-cylinder heat transfer processes. The primary objective of this paper is to present a fundamentally based boundary layer heat transfer model. The two-zone combustion model couples an adiabatic core zone with a boundary layer heat transfer model. The model predicts film coefficient, with approximately the same universal shape and magnitudes as an existing global model.
Technical Paper

Quantification of Local Ozone Production Attributable to Automobile Hydrocarbon Emissions

2001-11-12
2001-01-3760
When automobile hydrocarbons are exhausted into the atmosphere in the presence of NOx and sunlight, ground-level ozone is formed. While researchers have used Maximum Incremental Reactivity (MIR) factors to estimate ozone production, this procedure often overestimates Local Ozone Production (LOP) because it does not consider local atmospheric conditions. In this paper, an enhanced MIR methodology for estimating actual LOP attributable to a vehicle in a particular ozone problem area is presented. In addition to using tabulated MIR factors, the procedure also uses local hydrocarbon reaction terms and a relative mechanistic reactivity term that account for local atmospheric conditions. Through this approach, the effects of hydrocarbon reaction rates, hydrocarbon residence times, and prevailing HC/NOx ratio are accounted for. The procedure is intended to enable automotive engineers to more realistically estimate actual local ozone production resulting from hydrocarbon emissions.
Technical Paper

A Universal Heat Transfer Correlation for Intake and Exhaust Flows in an Spark-Ignition Internal Combustion Engine

2002-03-04
2002-01-0372
In this paper, the available correlations proposed in the literature for the gas-side heat transfer in the intake and exhaust system of a spark-ignition internal combustion engine were surveyed. It was noticed that these only by empirically fitted constants. This similarity provided the impetus for the authors to explore if a universal correlation could be developed. Based on a scaling approach using microscales of turbulence, the authors have fixed the exponential factor on the Reynolds number and thus reduced the number of adjustable coefficients to just one; the latter can be determined from a least squares curve-fit of available experimental data. Using intake and exhaust side data, it was shown that the universal correlation The correlation coefficient of this proposed heat transfer model with all available experimental data is 0.845 for the intake side and 0.800 for the exhaust side.
Technical Paper

An Approach for Modeling the Effects of Gas Exchange Processes on HCCI Combustion and Its Application in Evaluating Variable Valve Timing Control Strategies

2002-10-21
2002-01-2829
The present study introduces a modeling approach for investigating the effects of valve events and gas exchange processes in the framework of a full-cycle HCCI engine simulation. A multi-dimensional fluid mechanics code, KIVA-3V, is used to simulate exhaust, intake and compression up to a transition point, before which chemical reactions become important. The results are then used to initialize the zones of a multi-zone, thermo-kinetic code, which computes the combustion event and part of the expansion. After the description and the validation of the model against experimental data, the application of the method is illustrated in the context of variable valve actuation. It has been shown that early exhaust valve closing, accompanied by late intake valve opening, has the potential to provide effective control of HCCI combustion.
Technical Paper

The Effects of CO, H2, and C3H6 on the SCR Reactions of an Fe Zeolite SCR Catalyst

2013-04-08
2013-01-1062
Selective Catalytic Reduction (SCR) catalysts used in Lean NOx Trap (LNT) - SCR exhaust aftertreatment systems typically encounter alternating oxidizing and reducing environments. Reducing conditions occur when diesel fuel is injected upstream of a reformer catalyst, generating high concentrations of hydrogen (H₂), carbon monoxide (CO), and hydrocarbons to deNOx the LNT. In this study, the functionality of an iron (Fe) zeolite SCR catalyst is explored with a bench top reactor during steady-state and cyclic transient SCR operation. Experiments to characterize the effect of an LNT deNOx event on SCR operation show that adding H₂ or CO only slightly changes SCR behavior with the primary contribution being an enhancement of nitrogen dioxide (NO₂) decomposition into nitric oxide (NO). Exposure of the catalyst to C₃H₆ (a surrogate for an actual exhaust HC mixture) leads to a significant decrease in NOx reduction capabilities of the catalyst.
Technical Paper

Fuel Spray Simulation of High-Pressure Swirl-Injector for DISI Engines and Comparison with Laser Diagnostic Measurements

2003-03-03
2003-01-0007
A comprehensive model for sprays emerging from high-pressure swirl injectors in DISI engines has been developed accounting for both primary and secondary atomization. The model considers the transient behavior of the pre-spray and the steady-state behavior of the main spray. The pre-spray modeling is based on an empirical solid cone approach with varying cone angle. The main spray modeling is based on the Liquid Instability Sheet Atomization (LISA) approach, which is extended here to include the effects of swirl. Mie Scattering, LIF, PIV and Laser Droplet Size Analyzer techniques have been used to produce a set of experimental data for model validation. Both qualitative comparisons of the evolution of the spray structure, as well as quantitative comparisons of spray tip penetration and droplet sizes have been made. It is concluded that the model compares favorably with data under atmospheric conditions.
Technical Paper

A Global Model for Steady State and Transient S.I. Engine Heat Transfer Studies

1996-02-01
960073
A global, systems-level model which characterizes the thermal behavior of internal combustion engines is described in this paper. Based on resistor-capacitor thermal networks, either steady-state or transient thermal simulations can be performed. A two-zone, quasi-dimensional spark-ignition engine simulation is used to determine in-cylinder gas temperature and convection coefficients. Engine heat fluxes and component temperatures can subsequently be predicted from specification of general engine dimensions, materials, and operating conditions. Emphasis has been placed on minimizing the number of model inputs and keeping them as simple as possible to make the model practical and useful as an early design tool. The success of the global model depends on properly scaling the general engine inputs to accurately model engine heat flow paths across families of engine designs. The development and validation of suitable, scalable submodels is described in detail in this paper.
Technical Paper

Assessment of Alternative Strategies for Reducing Hydrocarbon and Carbon Monoxide Emissions from Small Two-Stroke Engines

1996-02-01
960743
Five small two-stroke engine designs were tested at different air/fuel ratios, under steady state and transient cycles. The effects of combustion chamber design, carburetor design, lean burning, and fuel composition on performance, hydrocarbon and carbon monoxide emissions were studied. All tested engines had been designed to run richer than stoichiometric in order to obtain satisfactory cooling and higher power. While hydrocarbon and carbon monoxide emissions could be greatly reduced with lean burning, engine durability would be worsened. However, it was shown that the use of a catalytic converter with acceptably lean combustion was an effective method of reducing emissions. Replacing carburetion with in-cylinder fuel injection in one of the engines resulted in a significant reduction of hydrocarbon and carbon monoxide emissions.
Technical Paper

An Early-Design Methodology for Predicting Transient Fuel Economy and Catalyst-Out Exhaust Emissions

1997-05-19
971838
An early-design methodology for predicting both expected fuel economy and catalyst-out CO, HC and NOx concentrations during arbitrarily-defined transient cycles is presented. The methodology is based on utilizing a vehicle-powertrain model with embedded maps of fully warmed up engine-out performance and emissions, and appropriate temperature-dependent correction factors to account for not fully warmed up conditions during transients. Similarly, engine-out emissions are converted to catalyst-out emissions using conversion efficiencies based on the catalyst brick temperature. A crucial element of the methodology is hence the ability to predict heat flows and component temperatures in the engine and the exhaust system during transients, consistent with the data available during concept definition and early design phases.
Technical Paper

Using Artificial Neural Networks for Representing the Air Flow Rate through a 2.4 Liter VVT Engine

2004-10-25
2004-01-3054
The emerging Variable Valve Timing (VVT) technology complicates the estimation of air flow rate because both intake and exhaust valve timings significantly affect engine's gas exchange and air flow rate. In this paper, we propose to use Artificial Neural Networks (ANN) to model the air flow rate through a 2.4 liter VVT engine with independent intake and exhaust camshaft phasers. The procedure for selecting the network architecture and size is combined with the appropriate training methodology to maximize accuracy and prevent overfitting. After completing the ANN training based on a large set of dynamometer test data, the multi-layer feedforward network demonstrates the ability to represent air flow rate accurately over a wide range of operating conditions. The ANN model is implemented in a vehicle with the same 2.4 L engine using a Rapid Prototype Controller.
Technical Paper

Effect of Exhaust Valve Timing on Gasoline Engine Performance and Hydrocarbon Emissions

2004-10-25
2004-01-3058
Despite remarkable progress made over the past 30 years, automobiles continue to be a major source of hydrocarbon emissions. The objective of this study is to evaluate whether variable exhaust valve opening (EVO) and exhaust valve closing (EVC) can be used to reduce hydrocarbon emissions. An automotive gasoline engine was tested with different EVO and EVC timings under steady-state and start-up conditions. The first strategy that was evaluated uses early EVO with standard EVC. Although exhaust gas temperature is increased and catalyst light-off time is reduced, the rapid drop in cylinder temperature increases cylinder-out hydrocarbons to such a degree that a net increase in hydrocarbon emissions results. The second strategy that was evaluated uses early EVO with early EVC. Early EVO reduces catalyst light-off time by increasing exhaust gas temperature and early EVC keeps the hydrocarbon-rich exhaust gas from the piston crevice from leaving the cylinder.
X