Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wear Rates of Gears By the Radioactive Method

1955-01-01
550271
A METHOD is described in this paper by which the rates of gear wear under different conditions can be determined by the use of the radioactive tracer technique. With this method one can measure the minutest amount of wear at loads and speeds much below critical destructive conditions. This method makes possible the continuous determination of rates of gear wear at all loads and speeds in actual full-scale units. In this investigation, the radioactive tracer technique has been used to determine the rates of gear wear when using a straight mineral oil and when using an extreme-pressure gear lubricant.
Technical Paper

Visualization of Frequency Response Using Nyquist Plots

2022-03-29
2022-01-0753
Nyquist plots are a classical means to visualize a complex vibration frequency response function. By graphing the real and imaginary parts of the response, the dynamic behavior in the vicinity of resonances is emphasized. This allows insight into how modes are coupling, and also provides a means to separate the modes. Mathematical models such as Nyquist analysis are often embedded in frequency analysis hardware. While this speeds data collection, it also removes this visually intuitive tool from the engineer’s consciousness. The behavior of a single degree of freedom system will be shown to be well described by a circle on its Nyquist plot. This observation allows simple visual examination of the response of a continuous system, and the determination of quantities such as modal natural frequencies, damping factors, and modes shapes. Vibration test data from an auto rickshaw chassis are used as an example application.
Technical Paper

Vibratory Loosening of Bolts

1966-02-01
660432
In this paper, the effects of fluctuating torque on loosening of a tightly seated bolt are investigated. Tests over a wide range of bolt stresses and loosening torques are reported and equipment developed for determination of such effects is described. It is shown that a definite functional relationship exists between the stress on a typical bolt, the oscillatory loosening torque that is applied, and the number of cycles before the bolt becomes loose. The effects of these relationships follow a clearly defined law, although they are, of course, influenced by a number of additional variables.
Journal Article

Vehicle and Drive Cycle Simulation of a Vacuum Insulated Catalytic Converter

2016-04-05
2016-01-0967
A GT-SUITE vehicle-aftertreatment model has been developed to examine the cold-start emissions reduction capabilities of a Vacuum Insulated Catalytic Converter (VICC). This converter features a thermal management system to maintain the catalyst monolith above its light-off temperature between trips so that most of a vehicle’s cold-start exhaust emissions are avoided. The VICC thermal management system uses vacuum insulation around the monoliths. To further boost its heat retention capacity, a metal phase-change material (PCM) is packaged between the monoliths and vacuum insulation. To prevent overheating of the converter during periods of long, heavy engine use, a few grams of metal hydride charged with hydrogen are attached to the hot side of the vacuum insulation. The GT-SUITE model successfully incorporated the transient heat transfer effects of the PCM using the effective heat capacity method.
Technical Paper

Using Artificial Neural Networks for Representing the Air Flow Rate through a 2.4 Liter VVT Engine

2004-10-25
2004-01-3054
The emerging Variable Valve Timing (VVT) technology complicates the estimation of air flow rate because both intake and exhaust valve timings significantly affect engine's gas exchange and air flow rate. In this paper, we propose to use Artificial Neural Networks (ANN) to model the air flow rate through a 2.4 liter VVT engine with independent intake and exhaust camshaft phasers. The procedure for selecting the network architecture and size is combined with the appropriate training methodology to maximize accuracy and prevent overfitting. After completing the ANN training based on a large set of dynamometer test data, the multi-layer feedforward network demonstrates the ability to represent air flow rate accurately over a wide range of operating conditions. The ANN model is implemented in a vehicle with the same 2.4 L engine using a Rapid Prototype Controller.
Technical Paper

Understanding and Modeling NOx Emissions from Air Conditioned Automobiles

2000-03-06
2000-01-0858
The emission of excessive quantities of NOx when the automobile air conditioner is turned on has received a fair amount of attention in recent years. Since NOx is a smog precursor, it is important to understand the reasons for this jump in emissions especially on hot sunny days when air conditioner usage is at a maximum. A simple thermodynamic model is used to demonstrate how the torque from a typical air conditioner compressor is mainly related to the ambient temperature. The compressor's on-off cycling patterns are also characterized. Since the compressor significantly loads the engine, it affects fuel economy and emissions. The key independent variable that we employ to represent engine load is fuel rate. The correlations between engine-out NOx emissions and fuel rate are shown for a number of light duty vehicles and trucks. From these, a physical model for engine-out NOx emissions (with and without air conditioning) is presented.
Technical Paper

Transmission Shift Strategies for Electrically Supercharged Engines

2019-04-02
2019-01-0308
This work investigates the potential improvements in vehicle fuel economy possible by optimizing gear shift strategies to leverage a novel boosting device, an electrically assisted variable speed supercharger (EAVS), also referred to as a power split supercharger (PSS). Realistic gear shift strategies, resembling those commercially available, have been implemented to control upshift and downshift points based on torque request and engine speed. Using a baseline strategy from a turbocharged application of a MY2015 Ford Escape, a vehicle gas mileage of 34.4 mpg was achieved for the FTP75 drive cycle before considering the best efficiency regions of the supercharged engine.
Journal Article

Three-Dimensional Three-Component Air Flow Visualization in a Steady-State Engine Flow Bench Using a Plenoptic Camera

2017-03-28
2017-01-0614
Plenoptic particle tracking velocimetry (PTV) shows great potential for three-dimensional, three-component (3D3C) flow measurement with a simple single-camera setup. It is therefore especially promising for applications in systems with limited optical access, such as internal combustion engines. The 3D visualization of a plenoptic imaging system is achieved by inserting a micro-lens array directly anterior to the camera sensor. The depth is calculated from reconstruction of the resulting multi-angle view sub-images. With the present study, we demonstrate the application of a plenoptic system for 3D3C PTV measurement of engine-like air flow in a steady-state engine flow bench. This system consists of a plenoptic camera and a dual-cavity pulsed laser. The accuracy of the plenoptic PTV system was assessed using a dot target moved by a known displacement between two PTV frames.
Technical Paper

Theoretical, Computational and Experimental Investigation of Helmholtz Resonators: One-Dimensional versus Multi-Dimensional Approach

1994-03-01
940612
Helmholtz resonators are widely used for the noise reduction in vehicle induction and exhaust systems. This study investigates the effect of specific cavity dimensions of these resonators theoretically, computationally and experimentally. By considering one-dimensional wave propagation through distributed masses in the connector and cavity, a closed-form expression for the transmission loss of axisymmetric configurations is presented, thereby partially eliminating the limitations of a lumped-parameter analysis. Eight resonators of fixed neck geometry and cavity volume with length-to-diameter ratios of the volume varying from 0.32 to 23.92 are studied both computationally and experimentally. The first of the two computational approaches employed in the study implements a finite difference time domain technique to solve the nonlinear governing equations of one-dimensional compressible flow.
Technical Paper

The Potential of the Variable Stroke Spark-Ignition Engine

1997-02-24
970067
A comprehensive quasi-dimensional computer simulation of the spark-ignition (SI) engine was used to explore part-load, fuel economy benefits of the Variable Stroke Engine (VSE) compared to the conventional throttled engine. First it was shown that varying stroke can replace conventional throttling to control engine load, without changing the engine characteristics. Subsequently, the effects of varying stroke on turbulence, burn rate, heat transfer, and pumping and friction losses were revealed. Finally these relationships were used to explain the behavior of the VSE as stroke is reduced. Under part load operation, it was shown that the VSE concept can improve brake specific fuel consumption by 18% to 21% for speeds ranging from 1500 to 3000 rpm. Further, at part load, NOx was reduced by up to 33%. Overall, this study provides insight into changes in processes within and outside the combustion chamber that cause the benefits and limitations of the VSE concept.
Technical Paper

The Influence of the Operating Duty Cycles on the Composition of Exhaust Gas Recirculation Cooler Deposits of Industrial Diesel Engines

2020-04-14
2020-01-1164
Exhaust Gas Recirculation (EGR) coolers are commonly used in on-road and off-road diesel engines to reduce the recirculated gas temperature in order to reduce NOx emissions. One of the common performance behaviors for EGR coolers in use on diesel engines is a reduction of the heat exchanger effectiveness, mainly due to particulate matter (PM) deposition and condensation of hydrocarbons (HC) from the diesel exhaust on the inside walls of the EGR cooler. According to previous studies, typically, the effectiveness decreases rapidly initially, then asymptotically stabilizes over time. Prior work has postulated a deposit removal mechanism to explain this stabilization phenomenon. In the present study, five field aged EGR cooler samples that were used on construction machines for over 10,000 hours were analyzed in order to understand the deposit structure as well as the deposit composition after long duration use.
Journal Article

The Effects of Temperature, Shear Stress, and Deposit Thickness on EGR Cooler Fouling Removal Mechanism - Part 2

2016-04-05
2016-01-0186
Exhaust gas recirculation (EGR) coolers are used on diesel engines to reduce peak in-cylinder flame temperatures, leading to less NOx formation during the combustion process. There is an ongoing concern with soot and hydrocarbon fouling inside the cold surface of the cooler. The fouling layer reduces the heat transfer efficiency and causes pressure drop to increase across the cooler. A number of experimental studies have demonstrated that the fouling layer tends to asymptotically approach a critical height, after which the layer growth ceases. One potential explanation for this behavior is the removal mechanism derived by the shear force applied on the soot and hydrocarbon deposit surface. As the deposit layer thickens, shear force applied on the fouling surface increases due to the flow velocity growth. When a critical shear force is applied, deposit particles start to get removed.
Technical Paper

The Effects of CO, H2, and C3H6 on the SCR Reactions of an Fe Zeolite SCR Catalyst

2013-04-08
2013-01-1062
Selective Catalytic Reduction (SCR) catalysts used in Lean NOx Trap (LNT) - SCR exhaust aftertreatment systems typically encounter alternating oxidizing and reducing environments. Reducing conditions occur when diesel fuel is injected upstream of a reformer catalyst, generating high concentrations of hydrogen (H₂), carbon monoxide (CO), and hydrocarbons to deNOx the LNT. In this study, the functionality of an iron (Fe) zeolite SCR catalyst is explored with a bench top reactor during steady-state and cyclic transient SCR operation. Experiments to characterize the effect of an LNT deNOx event on SCR operation show that adding H₂ or CO only slightly changes SCR behavior with the primary contribution being an enhancement of nitrogen dioxide (NO₂) decomposition into nitric oxide (NO). Exposure of the catalyst to C₃H₆ (a surrogate for an actual exhaust HC mixture) leads to a significant decrease in NOx reduction capabilities of the catalyst.
Technical Paper

The Effect of Turbulence on the Hydrocarbon Emissions from Combustion in a Constant Volume Reactor

1984-02-01
840366
A cylindrical combustion bomb with dynamic charging system and electro-hydraulic sampling valve is used to study the effects of turbulence on hydrocarbon (HC) emissions from a quench layer and from artificial crevices. The turbulence level is varied by changing the delay time between induction of combustible charge and ignition. Propane-air mixtures were studied over an initial pressure range of 150 to 500 kPa and equivalence ratios of 0.7 to 1.4. Sampling valve experiments show that quench-layer fuel hydrocarbons are extensively oxidized within 5 ms of flame arrival under laminar conditions and that turbulence further reduces the already low level. Upper limit estimates of the residual wall layer HC concentration show that residual quench layer hydrocarbons are only a small fraction of the exhaust HC emission.
Technical Paper

The Effect of Secondary Fuel Injection on the Performance and Exhaust Emissions of An Open-Chamber Diesel Engine

1978-02-01
780786
Secondary injection in a diesel engine is defined as the introduction of additional fuel into the combustion chamber after the end of the main injection. It is usually caused by residual pressure waves in the high-pressure pipe line connecting the pump and injector. When these waves exceed the injector opening pressure, secondary injection occurs. Tests revealed that the U.S. Army TACOM single-cylinder engine used in this investigation, fitted with an American Bosch injection system, had secondary injection within the normal engine operating region. The pump spill ports and delivery valve were redesigned to eliminate secondary injection, in accordance with previously reported work. Comparative tests of both the conventional and modified injection systems were run on the same engine, and the effects of secondary injection on engine power, economy, and exhaust emissions were determined.
Technical Paper

The Effect of Exhaust Emission Conditions and Coolant Temperature on the Composition of Exhaust Gas Recirculation Cooler Deposits

2023-04-11
2023-01-0438
Exhaust Gas Recirculation (EGR) coolers are widely used on diesel engines to reduce in-cylinder NOx formation. A common problem is the accumulation of a fouling layer inside the heat exchanger, mainly due to thermophoresis that leads to deposition of particulate matter (PM), and condensation of hydrocarbons (HC) from the diesel exhaust. From a recent investigation of deposits from field samples of EGR coolers, it was confirmed that the densities of their deposits were much higher than reported in previous studies. In this study, the experiments were conducted in order to verify hypotheses about deposit growth, especially densification. An experimental set up which included a custom-made shell and tube type heat exchanger with six surrogate tubes was designed to control flow rate independently, and was installed on a 1.9 L L-4 common rail turbo diesel engine.
Technical Paper

The Development of Throttled and Unthrottled PCI Combustion in a Light-Duty Diesel Engine

2006-04-03
2006-01-0202
Present-day implementations of premixed compression ignition low temperature (PCI) combustion in diesel engines use higher levels of exhaust gas recirculation (EGR) than conventional diesel combustion. Two common devices that can be used to achieve high levels of EGR are an intake throttle and a variable geometry turbocharger (VGT). Because the two techniques affect the engine air system in different ways, local combustion conditions differ between the two in spite of, in some cases, having similar burn patterns in the form of heat release. The following study has developed from this and other observations; observations which necessitate a deeper understanding of emissions formation within the PCI combustion regime. This paper explains, through the use of fundamental phenomenological observations, differences in ignition delay and emission indices of particulate matter (EI-PM) and nitric oxides (EI-NOx) from PCI combustion attained via the two different techniques to flow EGR.
Technical Paper

Study of Effects of Thermal Insulation Techniques on a Catalytic Converter for Reducing Cold Start Emissions

2018-04-03
2018-01-1431
Previous work done at the University of Michigan shows the capability of the vacuum-insulated catalytic converter (VICC) to retain heat during soak and the resulting benefits in reducing cold start emissions. This paper provides an improved version of the design which overcomes some of the shortcomings of the previous model and further improves the applicability and benefits of VICC. Also, newer materials have been evaluated and their effects on heat retention and emissions have studied using the 1-D after treatment model. Cold start emissions constitute around 60% to 80% of all the hydrocarbon and CO emissions in present day vehicles. The time taken to achieve the catalyst light-off temperature in a three-way catalytic converter significantly affects the emissions and fuel efficiency. The current work aims at developing a method to retain heat in catalytic converter, thus avoiding the need for light-off and reducing cold start emissions effectively.
Technical Paper

Structure-borne Vehicle Analysis using a Hybrid Finite Element Method

2009-05-19
2009-01-2196
The hybrid FEA method combines the conventional FEA method with the energy FEA (EFEA) for computing the structural vibration in vehicle structures when the excitation is applied on the load bearing stiff structural members. Conventional FEA models are employed for modeling the behavior of the stiff members in the vehicle. In order to account for the effect of the flexible members in the FEA analysis, appropriate damping and spring/mass elements are introduced at the connections between stiff and flexible members. Computing properly the values of these damping and spring/mass elements is important for the overall accuracy of the computations. Utilizing in these computations the analytical solutions for the driving point impedance of infinite or semi-infinite members introduces significant approximations.
Technical Paper

Structural Vibration of an Engine Block and a Rotating Crankshaft Coupled Through Elastohydrodynamic Bearings

2003-05-05
2003-01-1724
A comprehensive formulation is presented for the dynamics of a rotating flexible crankshaft coupled with the dynamics of an engine block through a finite difference elastohydrodynamic main bearing lubrication algorithm. The coupling is based on detailed equilibrium conditions at the bearings. The component mode synthesis is employed for modeling the crankshaft and block dynamic behavior. A specialized algorithm for coupling the rigid and flexible body dynamics of the crankshaft within the framework of the component mode synthesis has been developed. A finite difference lubrication algorithm is used for computing the oil film elastohydrodynamic characteristics. A computationally accurate and efficient mapping algorithm has been developed for transferring information between a high - density computational grid for the elastohydrodynamic bearing solver and a low - density structural grid utilized in computing the crankshaft and block structural dynamic response.
X