Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Personal Integrity” and Man-Machine Integration

1982-02-01
821348
A sense of “personal integrity” blocks pilot use of new information about how he thinks. Research on human performance under stress done over the past fifty years indicates increased rigidity and regression to earlier learned behavior in high stress, and in low Stress a shift in attention to any domestic situation or on the job controversy which is of higher stress than that of the job at hand, all without the pilot's knowledge. Informal surveys of commercial pilot training and commercial pilot attitudes towards these studies indicate that the study findings directly confront learned cultural responses. Pilot and trainer reactions prevent the information from being adequately investigated or formally taught. The findings are not written into training manuals and pilots who are informally given the information do not have adequate access to the knowledge when it is needed.
Technical Paper

“Greater Than the Sum of its Parts” Integrated Flight Training/Aircrew Coordination

1994-10-01
942132
The requirement for crew resource management (CRM), or aircrew coordination training (ACT) in military parlance, has been well documented and attested to. In addition, aircraft systems training has become more intense and more in-depth in the new aircraft designs, especially in multi-crew and complex aircraft such as the MV-22 Osprey Tiltrotor. (see Figure 1) Former training systems detailed training procedures that called for classroom training and simulation/simulator training followed by flight training. Improvements in aircraft flight skills training provide increased flying training capability coupled with reduced training time by integrating a mixed simulation/flight training syllabus, e.g. two to three simulation periods followed by one or two flight training periods covering the same material/skills. In addition, the simulation training will introduce new skills; the following flight periods will further refine/hone those skills.
Technical Paper

“Fuel Flow Method2” for Estimating Aircraft Emissions

2006-08-30
2006-01-1987
In recent years there has been increasing interest in quantifying the emissions from aircraft in order to generate inventories of emissions for climate models, technology and scenario studies, and inventories of emissions for airline fleets typically presented in environmental reports. The preferred method for calculating aircraft engine emissions of NOx, HC, and CO is the proprietary “P3T3” method. This method relies on proprietary airplane and engine performance models along with proprietary engine emissions characterizations. In response and in order to provide a transparent method for calculating aircraft engine emissions non proprietary fuel flow based methods 1,2,3 have been developed. This paper presents derivation, updates, and clarifications of the fuel flow method methodology known as “Fuel Flow Method 2”.
Technical Paper

“Converticar” - The Roadable Helicopter

1998-09-28
985513
The Boeing Company in Mesa, Arizona, has been conducting a concept design study of a roadable helicopter called the “Converticar” to assess its feasibility. This is a twin-engine vehicle with twin retractable coaxial counter-rotating rotors. The purpose of the study is to describe a vehicle that carries four passengers in the equivalent of a luxury car that also can fly like a helicopter, and can be priced like a luxury car. To come near this cost goal, the production rate must be on the order of 500,000 units a year. At that rate there is no chance of training a comparable number of pilots each year. So the machine must fly and navigate autonomously, with the pilot just dialing in where he/she wants to go. Technologically, the concept appears to be feasible. Modern design processes, new materials, and improved manufacturing process should allow the Converticar to be built at the prescribed rate when the proper infrastructure for manufacturing it is made available.
Technical Paper

“Condensation – Why it Needs to be Addressed in Every Aircraft”

2003-09-08
2003-01-3000
A wide body aircraft carries almost a half–ton of water and ice between the cabin and skin of the aircraft. The water can get on wires and connectors, which can cause electrical problems, cause corrosion and rust, and, eventually, “rain in the plane”. The speaker is the CEO of CTT Systems that has developed a system that solves the condensation by using dry air. The speaker will discuss how condensation can be prevented and how airlines can also save maintenance costs in the process. This topic is relevant for the attendees at the Aerospace Expo, as they are decision makers who need to be aware of this issue. It is also important for the MRO shows as the attendees are on the front lines of dealing with this problem.
Technical Paper

‘Issues and Behaviors of Airborne Particulate Matters under Microgravity Environment’

2004-07-19
2004-01-2328
During several ISS missions, there were false alarms at both US and Russian smoke detectors. High local airborne particulate concentrations and interior deposits are considered the causes for such anomalies. Alternatives are proposed to replace or complement these faulty smoke detectors. The entrained zeolite particles may play a role in causing problems with check valves and air save pumps in CDRA and Vozdukh. Another incidence has been the dispersion of particulates out of Metox regeneration oven. Particulate matters with aerodynamic diameter of 15 microns and above, which normally settle down on earth, stay airborne under micro-gravity and thereby cause the above-mentioned nuisances. The motion of such a particle along a gas stream with an initial velocity can be expressed by theoretical equations. Stokes' Law leads to the descriptions of inertial precipitation of aerosols that are important in solving the issues.
Technical Paper

‘Bigelow Aerospace® Life Support Laboratory - Planning and Status’

2004-07-19
2004-01-2474
This Life Support Laboratory consists of a simulator of the spacecraft called Nautilus, which houses Air Revitalization Subsystem, Atmospheric Control and Supply, and Fire Detection and Suppression in the Equipment Area. There are supporting facilities including a Human Metabolic Simulator, simulated Low and Moderate Temperature Coolant Loop, chemical analysis bench, purified water supply, vacuum and gas supplies. These facilities are scheduled to be completed and start to operate for demonstration purposes by March 2005. There are an ARES Ground Model (AGM) and a Trace Contaminant Control Assembly in the ARS. The latter will be integrated with the AGM and a Condensing Heat Exchanger. The unit of AGM is being engineered, built, and will be delivered in early 2005 by EADS Space Division. These assemblies will be operated for sensitivity analysis, integration and optimization studies. The main goal is the achievement for optimal recovery of oxygen.
Technical Paper

srv-k Status Aboard the International Space Station During Missions 15 and 16

2008-06-29
2008-01-2191
The paper summarizes the experience gained on the ISS water management system during the missions of ISS-1 through ISS-16 (since November 2 2000, through December 31, 2007). The water supply sources and structure, consumption and supply balance at various phases of space station operation are reviewed. The performance data of the system for water recovery from humidity condensate SRV-K and urine feed and pretreatment system SPK-U in the Russian orbital segment are presented. The key role of water recovery on a board the ISS and the need to supplement the station's water supply hardware with a system for water reclamation from urine, water from a carbon dioxide reduction system and hygiene water is shown.
Technical Paper

some development problems with Large Cryogenic Propellant Systems

1960-01-01
600022
HEAT TRANSFER causes loading and starting design problems in large missile systems powered by cryogenic propellants. This manifests itself during loading as effective density variation, violent surface conditions, boiloff, and ice formation — problems which may be solved by insulating the tank. During starting it causes overheating and caviation — effects which may be reduced by recirculators and subcooled charge injections. The study described in this paper centers around liquid oxygen and its variations in heat flux rate, which affect liquid density, surface condition, and replenishing requirements. The problem areas are made apparent by consideration of a hypothetical missile system.*
Technical Paper

eVTOL Flight: Forecasting Future Training Requirements in an Emerging Aviation Market

2023-03-07
2023-01-1009
Most emerging electric vertical takeoff and landing (eVTOL) aircraft feature distributed electric propulsion systems with automation features that simplify operations for future pilots. In theory, increasing automation levels should reduce pilot workload, decrease training time, and improve performance consistency. Air Education and Training Command Detachment 62 (AETC/Det 62) sought to test this theory as part of a larger study involving 70+ participants, two eVTOL platform simulators, and multimodal assessments of flight performance. In the present report, we compared expert ratings of flight performance of pilots who do not have prior pilot experience or training (herein referred to as ab initio pilots; i.e., 0 flight hours) to those of experienced pilots (i.e., >300 flight hours) in either a semi-automated or highly-automated simulated eVTOL platform.
Technical Paper

a study of Self-Contained Starting Systems for Turbojet and Turboprop Engines

1960-01-01
600011
SUBSTANTIAL POWER is necessary to start the modern jet engine. Thus, starting equipment has become a major concern of air transport operators. This paper discusses the equipment used with self-contained starting systems. The authors discuss and evaluate a variety of self-contained systems: combustor, fuel-air combustion, cartridge, liquid propellant, hydraulic supported by auxiliary power units, and electric supported by APU. Possible future systems are: self-breathing systems, oxygen combustors, and liquid-oxygen-water-fuel combustors. It is emphasized that the choice of a starting system for a particular aircraft will depend on aircraft characteristics and the aircraft's intended use.*
Article

Zwick Roell provides flexible materials testing over a wide temperature range

2018-10-19
To enable the tests required for development work to be performed with maximum efficiency, the Zwick Roell Group (ZwickRoell) – a global supplier of materials testing machines based out of Ulm, Germany – developed a materials testing machine that can be equipped with both a temperature chamber and a high-temperature furnace.
Technical Paper

Zn-Ni Plating as a Cadmium Alternative

2007-09-17
2007-01-3837
In a 2-year program sponsored by SJAC, an aqueous electroplating process using alkaline Zn-Ni with trivalent chromium post treatment is under evaluation for high strength steel for aircraft application as an alternative to cadmium. Commercial Zn-15%Ni rack/barrel plating solutions are basis for plating aircraft parts or fasteners. Brightener was reduced from the original formula to form porous plating that enables bake-out of hydrogen to avoid hydrogen embrittlement condition. Properties of the deposit, such as appearance, adhesion, un-scribed corrosion resistance, and galvanic corrosion resistance in contact with Al alloy, were evaluated. Coefficient of friction was compared with Cd plating by torque-tension measurements. Evaluation of the plating for scribed corrosion resistance, primer adhesion, etc. will continue in FY2007.
Technical Paper

Zirconia Electrolysis Cells for Oxygen Generation from Carbon Dioxide for Mars In-Situ Resource Utilization Applications

1998-07-13
981655
A zirconia electroysis cell is an all-solid state (mainly ceramic) device consisting of two electrodes separated by a dense zirconia electrolyte. The cell electrochemically reduces carbon dioxide to oxygen and carbon monoxide at elevated temperatures (800 to 1000°C). The zirconia electrolysis cell provides a simple, lightweight, low-volume system for Mars In-Situ Resource Utilization (ISRU) applications. This paper describes the fabrication process and discusses the electrochemical performance and other properties of zirconia electrolysis cells made by the tape calendering method. Electrolytes produced by this method are very thin (micrometer-thick); the thin electrolyte reduces ohmic losses in the cell, permitting efficient operation at temperatures of 800°C or below.
Technical Paper

Zero-Waste PVD Cadmium for High Strength Steels

1998-11-11
983137
In spite of environmental issues related to cadmium and its electroplating process, electroplated cadmium is still extensively used in the aerospace and defense sectors. This trend is likely to continue especially for high strength steels because cadmium provides the best known corrosion and embrittlement protection for this application. Consequently, the environmental concerns related to the cadmium electroplating have been addressed using an alternative Zero-waste Physical Vapor Deposition (Z-PVD). This method does not use liquids, it recycles cadmium in situ, and is free of hydrogen embrittlement. The Z-PVD process is now in commercial production for the aerospace fasteners. The quality of the coatings has been at least equal to that of the electroplated cadmium.
Technical Paper

Zero-G Simulation using Neutral Buoyancy

1989-07-01
891529
For human beings who have been reared on the earth with its 1 G gravitational field, the condition of weightlessness is a world with which we are unfamiliar. Even if the layout and equipment configuration of a spacecraft designed to compensate for operation under Zero-G conditions, there are some things which are not effective under actual weightless conditions. In the design of a manned spacecraft, it is necessary to accumulate design data on human performance in a weightless condition, then to undertake design evaluations and verification under weightless conditions. In this paper, testing for the purpose of evaluating the effectiveness of Zero-G simulation using neutral buoyancy, conducted first of all in Japan, and recommendations on the equipment and Facilities required to conduct such simulations, are described.
Technical Paper

Zero G Liquid Propellant Orientation by Passive Control

1964-01-01
640239
This paper discusses the advantages and problems associated with the use of “passive” liquid containment systems that utilize liquid intermolecular forces for propellant orientation in reduced or zero gravity environments. Liquid orientation is required to provide reliable engine restart and tank venting operations of space vehicle propulsion systems. Various liquid containment system concepts, and associated design criteria, are presented and general problem areas of interface stability, liquid slosh, and effects of thermal energy are described. Descriptions of present and planned test facilities designed to provide reduced gravity environments and extended time durations are included. It is concluded that additional design criteria in the problem areas discussed must be obtained before “passive” liquid containment systems can replace systems now used in reduced or zero gravity environments.
Technical Paper

Zero Carbon Emission Aviation Fuel Technology Review - The Hydrogen Pathway

2024-01-08
2023-36-0029
The commercial aviation currently accounts for roughly 2.5 % of the global CO2 emissions and around 3.5% of world warming emissions, taking into account non CO2 effects on the climate. Its has grown faster in recent decades than the other transport modes (road, rail or shipping), with an average rate of 2.3%/year from 1990 to 2019, prior to the pandemic. Moreover, its share of Greenhouse (GHG) emissions is supposed to grow, with the increasing demand scenario of air trips worldwide. This scenario might threaten the decarbonization targets assumed by the aviation industry, in line with the world efforts to minimize the climate effects caused by the carbon emissions. In this context, hydrogen is set as a promising alternative to the traditional jet fuel, due to its zero carbon emissions.
X