Refine Your Search

Search Results

Technical Paper

A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

2006-04-03
2006-01-0195
In this paper a fast NOx model is presented which can be used for engine optimization, aftertreatment control or virtual mapping. A cylinder pressure trace is required as input data. High calculation speed is obtained by using table interpolation to calculate equilibrium temperatures and species concentrations. Test data from a single-cylinder engine and from a complete six-cylinder engine have been used for calibration and validation of the model. The model produces results of good agreement with emission measurements using approximately 50 combustion product zones and a calculation time of one second per engine cycle. Different compression ratios, EGR rates, injection timing, inlet pressures etc. were used in the validation tests.
Technical Paper

A Study of the Homogeneous Charge Compression Ignition Combustion Process by Chemiluminescence Imaging

1999-10-25
1999-01-3680
An experimental study of the Homogeneous Charge Compression Ignition (HCCI) combustion process has been conducted by using chemiluminescence imaging. The major intent was to characterize the flame structure and its transient behavior. To achieve this, time resolved images of the naturally emitted light were taken. Emitted light was studied by recording its spectral content and applying different filters to isolate species like OH and CH. Imaging was enabled by a truck-sized engine modified for optical access. An intensified digital camera was used for the imaging. Some imaging was done using a streak-camera, capable of taking eight arbitrarily spaced pictures during a single cycle, thus visualizing the progress of the combustion process. All imaging was done with similar operating conditions and a mixture of n-heptane and iso-octane was used as fuel. Some 20 crank angles before Top Dead Center (TDC), cool flames were found to exist.
Technical Paper

Analysis of the Effect of Geometry Generated Turbulence on HCCI Combustion by Multi-Zone Modeling

2005-05-11
2005-01-2134
This paper illustrates the applicability of a sequential fluid mechanics, multi-zone chemical kinetics model to analyze HCCI experimental data for two combustion chamber geometries with different levels of turbulence: a low turbulence disc geometry (flat top piston), and a high turbulence square geometry (piston with a square bowl). The model uses a fluid mechanics code to determine temperature histories in the engine as a function of crank angle. These temperature histories are then fed into a chemical kinetic solver, which determines combustion characteristics for a relatively small number of zones (40). The model makes the assumption that there is no direct linking between turbulence and combustion. The multi-zone model yields good results for both the disc and the square geometries. The model makes good predictions of pressure traces and heat release rates.
Technical Paper

Compression Ratio Influence on Maximum Load of a Natural Gas Fueled HCCI Engine

2002-03-04
2002-01-0111
This paper discusses the compression ratio influence on maximum load of a Natural Gas HCCI engine. A modified Volvo TD100 truck engine is controlled in a closed-loop fashion by enriching the Natural Gas mixture with Hydrogen. The first section of the paper illustrates and discusses the potential of using hydrogen enrichment of natural gas to control combustion timing. Cylinder pressure is used as the feedback and the 50 percent burn angle is the controlled parameter. Full-cycle simulation is compared to some of the experimental data and then used to enhance some of the experimental observations dealing with ignition timing, thermal boundary conditions, emissions and how they affect engine stability and performance. High load issues common to HCCI are discussed in light of the inherent performance and emissions tradeoff and the disappearance of feasible operating space at high engine loads.
Technical Paper

Experimental and Simulated Results Detailing the Sensitivity of Natural Gas HCCI Engines to Fuel Composition

2001-09-24
2001-01-3609
Natural gas quality, in terms of the volume fraction of higher hydrocarbons, strongly affects the auto-ignition characteristics of the air-fuel mixture, the engine performance and its controllability. The influence of natural gas composition on engine operation has been investigated both experimentally and through chemical kinetic based cycle simulation. A range of two component gas mixtures has been tested with methane as the base fuel. The equivalence ratio (0.3), the compression ratio (19.8), and the engine speed (1000 rpm) were held constant in order to isolate the impact of fuel autoignition chemistry. For each fuel mixture, the start of combustion was phased near top dead center (TDC) and then the inlet mixture temperature was reduced. These experimental results have been utilized as a source of data for the validation of a chemical kinetic based full-cycle simulation.
Technical Paper

Fuel Effects on Ion Current in an HCCI Engine

2005-05-11
2005-01-2093
An interest in measuring ion current in Homogeneous Charge Compression Ignition (HCCI) engines arises when one wants to use a cheaper probe for feedback of the combustion timing than expensive piezo electric pressure transducers. However the location of the ion current probe, in this case a spark plug, is of importance for both signal strength and the crank angle position where the signal is obtained. Different fuels will probably affect the ion current in both signal strength and timing and this is the main interest of this investigation. The measurements were performed on a Scania D12 engine in single cylinder operation and ion current was measured at 7 locations simultaneously. By arranging this setup there was a possibility to investigate if the ion current signals from the different spark plug locations would correlate with the fact that, for this particular engine, the combustion starts at the walls and propagates towards the centre of the combustion chamber.
Technical Paper

Homogeneous Charge Compression Ignition with Water Injection

1999-03-01
1999-01-0182
The use of water injection in a Homogeneous Charge Compression Ignition (HCCI) engine was experimentally investigated. The purpose of this study was to examine whether it is possible to control the ignition timing and slow down the rate of combustion with the use of water injection. The effects of different water flows, air/fuel ratios and inlet pressures were studied for three different fuels, iso-octane, ethanol and natural gas. It is possible to control the ignition timing in a narrow range with the use of water injection, but to the prize of an increase in the already high emissions of unburned hydrocarbons. The CO emission also increased. The NOx emissions, which are very low for HCCI, decreased even more when water injection was applied. The amount of water used was of the magnitude of the fuel flow.
Technical Paper

Hydrogen Addition For Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers

2002-10-21
2002-01-2686
One way to extend the lean burn limit of a natural gas engine is by addition of hydrogen to the primary fuel. This paper presents measurements made on a one cylinder 1.6 liter natural gas engine. Two combustion chambers, one slow and one fast burning, were tested with various amounts of hydrogen (0, 5, 10 and 15 %-vol) added to natural gas. Three operating points were investigated for each combustion chamber and each hydrogen content level; idle, part load (5 bar IMEP) and 13 bar IMEP (simulated turbocharging). Air/fuel ratio was varied between stoichiometric and the lean limit. For each operating point, a range of ignition timings were tested to find maximum brake torque (MBT) and/or knock. Heat-release rate calculations were made in order to assess the influence of hydrogen addition on burn rate. Addition of hydrogen showed an increase in burn rate for both combustion chambers, resulting in more stable combustion close to the lean limit.
Technical Paper

Influence of Mixture Quality on Homogeneous Charge Compression Ignition

1998-10-19
982454
The major advantages with Homogeneous Charge Compression Ignition, HCCI, is high efficiency in combination with low NOx-emissions. The major drawback with HCCI is the problem to control the ignition timing over a wide load and speed range. Other drawbacks are the limitation in attainable IMEP and relativly high emissions of unburned hydrocarbons. But the use of Exhaust Gas Recycling (EGR) instead of only air, slows down the rate of combustion and makes it possible to use lower air/fuel ratio, which increases the attainable upper load limit. The influence of mixture quality was therefore experimentally investigated. The effects of different EGR rates, air/fuel ratios and inlet mixture temperatures were studied. The compression ratio was set to 18:1. The fuels used were iso-octane, ethanol and commercially available natural gas. The engine was operated naturally aspirated mode for all tests.
Technical Paper

Modeling and Experiments of HCCI Engine Combustion Using Detailed Chemical Kinetics with Multidimensional CFD

2001-03-05
2001-01-1026
Detailed chemical kinetics was implemented in the KIVA-3V multidimensional CFD code to study the combustion process in Homogeneous Charge Compression Ignition (HCCI) engines. The CHEMKIN code was implemented such that the chemistry and flow solutions were coupled. Detailed reaction mechanisms were used to simulate the fuel chemistry of ignition and combustion. Effects of turbulent mixing on the reaction rates were also considered. The model was validated using the experimental data from two modified heavy-duty diesel engines, including a Volvo engine and a Caterpillar engine operated at the HCCI mode. The results show that good levels of agreement were obtained using the present KIVA/CHEMKIN model for a wide range of engine conditions, including various fuels, injection systems, engine speeds, and EGR levels. Ignition timings were predicted well without the need to adjust any kinetic constants.
Technical Paper

Modeling the Effects of Geometry Generated Turbulence on HCCI Engine Combustion

2003-03-03
2003-01-1088
The present study uses a numerical model to investigate the effects of flow turbulence on premixed iso-octane HCCI engine combustion. Different levels of in-cylinder turbulence are generated by using different piston geometries, namely a disc-shape versus a square-shape bowl. The numerical model is based on the KIVA code which is modified to use CHEMKIN as the chemistry solver. A detailed reaction mechanism is used to simulate the fuel chemistry. It is found that turbulence has significant effects on HCCI combustion. In the current engine setup, the main effect of turbulence is to affect the wall heat transfer, and hence to change the mixture temperature which, in turn, influences the ignition timing and combustion duration. The model also predicts that the combustion duration in the square bowl case is longer than that in the disc piston case which agrees with the measurements.
Technical Paper

Multiple Point Ion Current Diagnostics in an HCCI Engine

2004-03-08
2004-01-0934
Interest in ion current sensing for HCCI combustion arises when a feedback signal from some sort of combustion sensor is needed in order to determine the state of the combustion process. A previous study has revealed that ion current sensors in the form of spark plugs can be used instead of expensive piezoelectric transducers for HCCI combustion sensing. Sufficiently high ion current levels were achieved when using relatively rich mixtures diluted with EGR. The study also shows that it is not the actual dilution per se but the actual air/fuel equivalence ratio which is important for the signal level. Conclusions were made that it is possible to obtain information on combustion timing and oscillating wave phenomena from the measurements. However, the study showed that the ion current is local compared to the pressure which is global in the combustion chamber.
Technical Paper

Pressure Oscillations During Rapid HCCI Combustion

2003-10-27
2003-01-3217
This work has focused on studying the in-cylinder pressure fluctuations caused by rapid HCCI combustion and determine what they consist of. Inhomogeneous autoignition sets up pressure waves traversing the combustion chamber. These pressure waves induce high gas velocities which causes increased heat transfer to the walls or in worst case engine damage. In order to study the pressure fluctuations a number of pressure transducers were mounted in the combustion chamber. The multi transducer arrangement was such that six transducers were placed circumferentially, one placed near the centre and one at a slight offset in the combustion chamber. The fitting of six transducers circumferentially was enabled by a spacer design and the two top mounted transducers were fitted in a modified cylinder head. During testing a disc shaped combustion chamber was used. The results of the tests conducted were that the in-cylinder pressure experienced during rapid HCCI-combustion is inhomogeneous.
Technical Paper

Role of Late Soot Oxidation for Low Emission Combustion in a Diffusion-controlled, High-EGR, Heavy Duty Diesel Engine

2009-11-02
2009-01-2813
Soot formation and oxidation are complex and competing processes during diesel combustion. The balance between the two processes and their history determines engine-out soot values. Besides the efforts to lower soot formation with measures to influence the flame lift-off distance for example or to use HCCI-combustion, enhancement of late soot oxidation is of equal importance for low-λ diffusion-controlled low emissions combustion with EGR. The purpose of this study is to investigate soot oxidation in a heavy duty diesel engine by statistical analysis of engine data and in-cylinder endoscopic high speed photography together with CFD simulations with a main focus on large scale in-cylinder gas motion. Results from CFD simulations using a detailed soot model were used to reveal details about the soot oxidation.
Technical Paper

Simultaneous Formaldehyde and Fuel-Tracer LIF Imaging in a High-Speed Diesel Engine With Optically Accessible Realistic Combustion Chamber

2005-09-11
2005-24-008
Simultaneous laser-induced fluorescence (LIF) imaging of formaldehyde and a fuel-tracer have been performed in a high-speed diesel engine. N-heptane and isooctane were used as fuel and toluene was used as a tracer. This arrangement made it possible to make simultaneous measurements of toluene by exciting at 266 nm and detecting at 270-320 nm while exciting formaldehyde at 355 nm and detecting at 400-500 nm. The aim of this study is to investigate how traditional fuel tracer and natural-occurring formaldehyde formed in the cool chemistry are transported in the piston bowl. A range of ignition delays were created by running the engine with different amounts of EGR. During this sweep the area where the low-temperature reactions take place were studied. The measurements were performed in a 0.5-l, single-cylinder optical engine running under conditions simulating a cruise-point, i.e., about 2.2 bar imep.
Technical Paper

Start of Injection Strategies for HCCI-combustion

2004-10-25
2004-01-2990
Homogeneous Charge Compression Ignition (HCCI) has a great potential for low NOx emissions but problems with emissions of unburned hydrocarbons (HC). One way of reducing the HC is to use direct injection. The purpose of this paper is to present experimental data on the trade off between NOx and HC. Injection timing, injection pressure and nozzle configuration all effect homogeneity of the mixture and thus the NOx and HC emissions. The engine studied is a single cylinder version of a Scania D12 that represents a modern heavy-duty truck size engine. A common rail (CR) system has been used to control injection pressure and timing. The combustion using injectors with different nozzle hole diameters and spray angle, both colliding and non-colliding, has been studied. The NOx emission level changes with start of injection (SOI) and the levels are low for early injection timing, increasing with retarded SOI. Different injectors produce different NOx levels.
Technical Paper

Study on Combustion Chamber Geometry Effects in an HCCI Engine Using High-Speed Cycle-Resolved Chemiluminescence Imaging

2007-04-16
2007-01-0217
The aim of this study is to see how geometry generated turbulence affects the Rate of Heat Release (ROHR) in an HCCI engine. HCCI combustion is limited in load due to high peak pressures and too fast combustion. If the speed of combustion can be decreased the load range can be extended. Therefore two different combustion chamber geometries were investigated, one with a disc shape and one with a square bowl in piston. The later one provokes squish-generated gas flow into the bowl causing turbulence. The disc shaped combustion chamber was used as a reference case. Combustion duration and ROHR were studied using heat release analysis. A Scania D12 Diesel engine, converted to port injected HCCI with ethanol was used for the experiments. An engine speed of 1200 rpm was applied throughout the tests. The effect of air/fuel ratio and combustion phasing was also studied.
Technical Paper

Supercharged Homogeneous Charge Compression Ignition

1998-02-23
980787
The Homogeneous Charge Compression Ignition (HCCI) is the third alternative for combustion in the reciprocating engine. Here, a homogeneous charge is used as in a spark ignited engine, but the charge is compressed to auto-ignition as in a diesel. The main difference compared with the Spark Ignition (SI) engine is the lack of flame propagation and hence the independence from turbulence. Compared with the diesel engine, HCCI has a homogeneous charge and hence no problems associated with soot and NOX formation. Earlier research on HCCI showed high efficiency and very low amounts of NOX, but HC and CO were higher than in SI mode. It was not possible to achieve high IMEP values with HCCI, the limit being 5 bar. Supercharging is one way to dramatically increase IMEP. The influence of supercharging on HCCI was therefore experimentally investigated. Three different fuels were used during the experiments: iso-octane, ethanol and natural gas.
Technical Paper

Supercharged Homogeneous Charge Compression Ignition (HCCI) with Exhaust Gas Recirculation and Pilot Fuel

2000-06-19
2000-01-1835
In an attempt to extend the upper load limit for Homogeneous Charge Compression Ignition (HCCI), supercharging in combination with Exhaust Gas Recirculation (EGR) have been applied. Two different boost pressures were used, 1.1 bar and 1.5 bar. High EGR rates were used in order to reduce the combustion rate. The highest obtained IMEP was 16 bar. This was achieved with the higher boost pressure, at close to stoichiometric conditions and with approximately 50 % EGR. Natural gas was used as the main fuel. In the case with the higher boost pressure, iso-octane was used as pilot fuel, to improve the ignition properties of the mixture. This made it possible to use a lower compression ratio and thereby reducing the maximum cylinder pressure. The tests were performed on a single cylinder engine operated at low speed (1000 rpm). The test engine was equipped with a modified cylinder head, having a Variable Compression Ratio (VCR) mechanism.
Technical Paper

The Application of Ceramic and Catalytic Coatings to Reduce the Unburned Hydrocarbon Emissions from a Homogeneous Charge Compression Ignition Engine

2000-06-19
2000-01-1833
An experimental and theoretical study of the effect of thermal barriers and catalytic coatings in a Homogeneous Charge Compression Ignition (HCCI) engine has been conducted. The main intent of the study was to investigate if a thermal barrier or catalytic coating of the wall would support the oxidation of the near-wall unburned hydrocarbons. In addition, the effect of these coatings on thermal efficiency due to changed heat transfer characteristics was investigated. The experimental setup was based on a partially coated combustion chamber. The upper part of the cylinder liner, the piston top including the top land, the valves and the cylinder head were all coated. As a thermal barrier, a coating based on plasma-sprayed Al2O3 was used. The catalytic coating was based on plasma-sprayed ZrO2 doped with Platinum. The two coatings tested were of varying thickness' of 0.15, 0.25 and 0.6 mm. The compression ratio was set to 16.75:1.
X