Refine Your Search

Topic

Search Results

Event

Program - Government/Industry Meeting 2024

2024-05-19
Annual conference government policy, regulatory makers, automotive industry neutral forum discuss US government regulation, technology, customer acceptance future vehicle design. industry event safety, emission control, fuel efficiency, automated vehicles.
Technical Paper

Applying Concolic Testing to the Automotive Domain

2024-04-09
2024-01-2802
Symbolic code execution is a powerful cybersecurity testing approach that facilitates the systematic exploration of all paths within a program to uncover previously unknown cybersecurity vulnerabilities. ...Symbolic code execution is a powerful cybersecurity testing approach that facilitates the systematic exploration of all paths within a program to uncover previously unknown cybersecurity vulnerabilities. This is achieved through a Satisfiability Modulo Theory (SMT) solver, which operates on symbolic values for program inputs instead of using their concrete counterparts.
Magazine

Automotive Engineering: August 2023

2023-08-03
3D, no waiting! Two companies' latest techniques take additive manufacturing to the next level. Reducing the battery materials supply risk "Adjacent" strategies such as improving vehicle efficiency and advancing promising chemistries can mitigate the risks associated with today's favored battery materials. A formula for real-world experience Student engineers soak up the lessons from an army of auto-industry and racing volunteers at Formula SAE Michigan. Editorial It's about more than a connector Supplier Eye The New Wild West SAE to standardize Tesla's NACS charging connector Report: Suppliers need more info sooner on OEM EV plans Mazda again producing rotary engines Toyota to build new battery lab in Michigan New Lexus SUVs: GX for show, TX for dough? VW introduces seminal ID.Buzz in three-row layout Spotlight: 3D Printing/Additive Manufacturing Equipment & Software
Magazine

Automotive Engineering: May Digital 2023

2023-05-01
Finding solutions for Sustainable Mobility SAE created its SMS team to help industry rethink itself as part of the new industrial revolution and the EV transition within it. Debarbonizing the EV battery supply chain Altering manufacturing processes and using a much higher percentage of low emission energy can help the battery industry get greener rapidly, according to a new McKinsey & Co. report. Europe's dust buster The pending Euro 7 vehicle-emissions regulations include a significant new sustainability wrinkle: first-ever restrictions for PM emissions from brakes. E-fueling for the future The development of carbon-neutral e-fuels enjoyed a major boost from European regulators, but production cost and scale remain issues. Fuels to transition the global legacy fleet The EV bandwagon has obscured potential solutions for decarbon-izing the enormous global ICE legacy fleet.
Magazine

Automotive Engineering: July/August 2022

2022-08-01
R1T Exposed! A comprehensive teardown of Rivian's pioneering electric pickup reveals praiseworthy build quality, innovative thinking…and some lapses in manufacturability. EVs drive NVH materials innovation Skateboard platforms, high-frequency motor noise push lower dB thresholds and new countermeasure solutions. Optimizing design for additive manufacturing Avoiding the pitfalls of 3D printing requires knowing the process limitations - and how to work around them. An expert at a leading AM specialist shares insights on getting it right. Real-time processors help drive the zonal E/E revolution With its new generation of software-compatible processors, NXP aims to accelerate systems consolidation and performance.
Magazine

Automotive Engineering: June 2022

2022-06-02
Supplier Eye Inflation ignites another supplier squeeze Toyota reinvesting in collaborative safety research SAE and NREL partner to strengthen EV-charging cybersecurity Expanding the 'bubble' of cabin acoustics 2022 Ford F-150 Lightning redefines the pickup paradigm GM's Hummer EV is like nothing else
Technical Paper

Future of Automotive Embedded Hardware Trust Anchors (AEHTA)

2022-03-29
2022-01-0122
In conjunction with an increasing number of related laws and regulations (such as UNECE R155 and ISO 21434), these drive security requirements in different domains and areas. 2 In this paper we examine the upcoming trends in EE architectures and investigate the underlying cyber-security threats and corresponding security requirements that lead to potential requirements for “Automotive Embedded Hardware Trust Anchors” (AEHTA).
Magazine

Automotive Engineering: November/December 2021

2021-12-01
High on hydrogen Through its Symbio joint venture with Michelin, Faurecia expands far beyond its interior-systems base into the fuel-cell future. Simulating a faster route to ADAS and AV validation With its new cloud-based Simphera platform, dSpace responds to demand from global automated-vehicle development teams to help manage their expanding, complex workload. Innovating the methanol fuel cell Using methanol as the source fuel provides an alternative to a gaseous-hydrogen distribution and storage infrastructure, among other potential benefits. Engineering the 2022 Toyota Tundra Chief Engineer Mike Sweers talks structure, materials and a different approach to hybrid power.
Journal Article

A Systematic Mapping Study on Security Countermeasures of In-Vehicle Communication Systems

2021-11-16
Abstract The innovations of vehicle connectivity have been increasing dramatically to enhance the safety and user experience of driving, while the rising numbers of interfaces to the external world also bring security threats to vehicles. Many security countermeasures have been proposed and discussed to protect the systems and services against attacks. To provide an overview of the current states in this research field, we conducted a systematic mapping study (SMS) on the topic area “security countermeasures of in-vehicle communication systems.” A total of 279 papers are identified based on the defined study identification strategy and criteria. We discussed four research questions (RQs) related to the security countermeasures, validation methods, publication patterns, and research trends and gaps based on the extracted and classified data. Finally, we evaluated the validity threats and the whole mapping process.
Journal Article

Software-Based Approach for Sharing Real-Time Peripherals in a Virtualized Automotive Microcontroller Platform

2021-05-11
Abstract In the automotive domain, the evolution of electrical and electronic (E/E) architecture trend is toward consolidating multiple heterogeneous applications executing on individual devices onto a centralized powerful computing platform. Many forums debate the nature of this centralized computing platform. At least for another decade, automotive powertrain functions will continue their development on a multicore controller platform (MCU) instead of many core processors. Data security and the need to meet Automotive Safety Integrity Level D (ASIL-D)-compliant powertrain functions are some of the reasons for this preference. For the centralized computing platform, virtualizing the underlying MCU will facilitate the simultaneous execution of heterogeneous powertrain applications with guaranteed spatial and temporal isolation. A common problem in virtualizing the MCU is the sharing of peripherals, which are comparatively scarce.
Journal Article

Cybersecurity Metrics for Automotive Systems

2021-04-06
2021-01-0138
With the increased need for cybersecurity in automotive systems due to the development of more advanced technologies and corresponding increased threat vectors, coupled with the upcoming International Organization for Standardization and the Society for Automotive Engineers (ISO/SAE) 21434 cybersecurity standard for automotive systems and cybersecurity regulations in The United Nations Economic Commission for Europe World Forum for Harmonization of Vehicle Regulations (UNECE WP.29), it is becoming increasingly important for auto manufacturers and suppliers to have a clear and common understanding and agreement of cybersecurity metrics for the development and deployment of vehicles. ...Cybersecurity for automotive systems is challenging, and one of the major challenges is how to measure this specific system property. ...With the increased need for cybersecurity in automotive systems due to the development of more advanced technologies and corresponding increased threat vectors, coupled with the upcoming International Organization for Standardization and the Society for Automotive Engineers (ISO/SAE) 21434 cybersecurity standard for automotive systems and cybersecurity regulations in The United Nations Economic Commission for Europe World Forum for Harmonization of Vehicle Regulations (UNECE WP.29), it is becoming increasingly important for auto manufacturers and suppliers to have a clear and common understanding and agreement of cybersecurity metrics for the development and deployment of vehicles.
Technical Paper

Deep Learning Based Real Time Vulnerability Fixes Verification Mechanism for Automotive Firmware/Software

2021-04-06
2021-01-0183
Software vulnerability management is one of the most critical and crucial security techniques, which analyzes the automotive software/firmware across the digital cockpit, ADAS, V2X, etc. domains for vulnerabilities, and provides security patches for the concerned Common Vulnerabilities and Exposures (CVE). The process of automotive SW/FW vulnerability management system between the OEMs and vendors happen through a channel of fixing a certain number of vulnerabilities by 1st tier supplier which needs to be verified in front of OEMs for the fixed number and type of patches in there deliverable SW/FW. The gap of verification between for the fixed patches between the OEMs and 1st tier supplier requires a reliable human independent intelligent technique to have a trustworthiness of verification.
Journal Article

Simple Cryptographic Key Management Scheme of the Electronic Control Unit in the Lifecycle of a Vehicle

2020-12-31
Abstract Connecting vehicles to various network services increases the risk of in-vehicle cyberattacks. For automotive industries, the supply chain for assembling a vehicle consists of many different organizations such as component suppliers, system suppliers, and car manufacturers (CMs). Moreover, once a vehicle has shipped from the factory of the CM, resellers, dealers, and owners of the vehicle may add and replace the optional authorized and third-party equipment. Such equipment may have serious security vulnerabilities that may be targeted by a malicious attacker. The key management system of a vehicle must be applicable to all use cases. We propose a novel key management system adaptable to the electronic control unit (ECU) lifecycle of a vehicle. The scope of our system is not only the vehicle product line but also the third-party vendors of automotive accessories and vehicle maintenance facilities, including resellers, dealers, and vehicle users.
Magazine

Automotive Engineering: November/December 2020

2020-11-26
Volkswagen reveals its 'people's' EV VW's ID.4 leads the 2021 stampede to electrification for the mass market. Answering the fuel-cell compressor question The optimum compressor device for a fuel cell depends on vehicle application - and a lot more. An Eaton expert explains. Tire pressure's impact on EV driving range A new study shows that tighter control of tire-pressure loss can lead to marked improvement in electric-vehicle efficiency. Editorial Warm socks for the EV options list Supplier Eye For suppliers, a new drumbeat New SAE wireless charging standard is EV game-changer Tula DMD aims for more-efficient e-machines Multiphysics helps transform modeling, simulation Is the camshaft being timed out? New Magna seat puts connectivity in the second row BMW reveals its first "M" performance-badged two-wheeler Volkswagen readies new-generation Golf R Q&A Discussing safety tech, standards and industry trends with Hyundai North America's Brian Latouf
Standard

Requirements for a COTS Assembly Management Plan

2020-08-03
CURRENT
EIA933C
This document applies to the development of Plans for integrating and managing COTS assemblies in electronic equipment and Systems for the commercial, military, and space markets; as well as other ADHP markets that wish to use this document. For purposes of this document, COTS assemblies are viewed as electronic assemblies such as printed wiring assemblies, relays, disk drives, LCD matrices, VME circuit cards, servers, printers, laptop computers, etc. There are many ways to categorize COTS assemblies1, including the following spectrum: At one end of the spectrum are COTS assemblies whose design, internal parts2, materials, configuration control, traceability, reliability, and qualification methods are at least partially controlled, or influenced, by ADHP customers (either individually or collectively). An example at this end of the spectrum is a VME circuit card assembly.
Standard

Hardware Protected Security for Ground Vehicles

2020-02-10
CURRENT
J3101_202002
Access mechanisms to system data and/or control is a primary use case of the hardware protected security environment (hardware protected security environment) during different uses and stages of the system. The hardware protected security environment acts as a gatekeeper for these use cases and not necessarily as the executor of the function. This section is a generalization of such use cases in an attempt to extract common requirements for the hardware protected security environment that enable it to be a gatekeeper. Examples are: Creating a new key fob Re-flashing ECU firmware Reading/exporting PII out of the ECU Using a subscription-based feature Performing some service on an ECU Transferring ownership of the vehicle Some of these examples are discussed later in this section and some have detailed sections of their own. This list is by no means comprehensive.
X