Refine Your Search

Topic

Author

Search Results

Technical Paper

Aerodynamic Performance Assessment on Typical SUV Car Model by On-Road Surface Pressure Mapping Method

2021-10-01
2021-28-0188
Aerodynamics of on-road vehicles has come to the limelight in the recent years. Better aerodynamic design of vehicle would improve vehicle fuel efficiency with increased acceleration performance. To obtain best aerodynamic body, the series of design modifications and different testing methodologies must be involved in vehicle design and validation phase. Wind tunnel aerodynamic force measurement, road load determination and computational fluid dynamics were the common methods used to evaluate the aerodynamic behavior of the vehicle body. As a novel approach, the present work discusses about the on-road (Real time) testing methodology that is aimed to evaluate the aerodynamic performance of vehicle body using surface pressure mapping. A 64-Channel digital pressure scanner has been utilized in this work for mapping the pressure at different locations of the typical vehicle body.
Technical Paper

An Optimal Method for Prediction of Engine Operating Points for an Effective Correlation in Fuel Economy Benchmarking

2020-09-25
2020-28-0346
It is imperative that all automobile manufacturers conduct vehicle level benchmarking at the initial stage of any new project. From the benchmark information, the manufacturers can set relevant targets for their own vehicles under development. In this regard, an accurate prediction of the engine operating points can improve the correlation of the measured fuel economy of the benchmark vehicle. The present work describes a novel method that can be used for the accurate prediction of the engine operating points of any benchmark vehicle. Since the idea of instrumenting the crankshaft/driveshaft with torque transducers is a costlier and time-consuming process, the proposed method can be effective in reducing the benchmarking. Hence, the objective of this work is to develop a mathematical model to calculate the real-time engine operating points (engine speed and torque) using parameters like vehicle speed, accelerator pedal map, driveline inertia, vehicle coastdown force and gradient.
Technical Paper

Calibration and Optimization of OBD Strategies for Selective Catalytic Reduction Systems for BSVI Application

2021-09-22
2021-26-0191
The adoption of BSVI emission norms for Indian domestic market brought a very stringent window for pollutants. For CI engines, the major impact was in the reduction of NOx by 68% and PM by 82% from BSIV norms. Technologically advanced after treatment systems like SCR / DPF / LNT aid to meet the stringent emission norms. Implementation of high-end after treatment systems in vehicles, requires precise monitoring and fool proof feedback systems. On Board Diagnostics (OBD) makes this possible. OBD is used to monitor the performance of after treatment systems and warn the user in case of deterioration. The challenges in framing OBD strategy increases with more electronic hardware and complex algorithms taking control, to monitor precise information on system performance. For a fool proof OBD monitoring of the exhaust system, a complete understanding of the SCR system and its components in terms of hardware specifications and software functionality is critical.
Technical Paper

Calibration and Parametric Investigations on Lean NOx Trap and Particulate Filter Models for a Light Duty Diesel Engine

2020-04-14
2020-01-0657
To comply with the stringent future emission mandates of light-duty diesel engines, it is essential to deploy a suitable combination of emission control devices like diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and DeNOx converter (LNT or SCR). Arriving at optimum size and layout of these emission control devices for a particular engine through experiments is both time and cost-intensive. Thus, it becomes important to develop suitable well-tuned simulation models that can be helpful to optimize individual emission control devices as well as arrive at an optimal layout for achieving higher conversion efficiency at a minimal cost. Towards this objective, the present work intends to develop a one-dimensional Exhaust After Treatment Devices (EATD) model using a commercial code. The model parameters are fine-tuned based on experimental data. The EATD model is then validated with experiment data that are not used for tuning the model.
Technical Paper

Challenges in Performing DPF Regeneration in Indian Driving Conditions for Meeting BS6 Emission

2021-09-22
2021-26-0194
The present study investigates the challenges on performing the on-road regeneration process in Indian road conditions for meeting BS6 emission. There are different types (DPF and SCR) of aftertreatment systems used for meeting BS6 emission. In which, active regeneration (on-road demand) is used to burn the particulate matter accumulated in the diesel particulate filter (DPF). This process must be performed frequently in order to prevent DPF system from over soot loading which leads to damage the DPF. This process is dependent on exhaust temperature, flow of exhaust and availability of oxygen etc. As we know, Indian roads are different from other countries such as European countries. The abnormal soot loading and frequent regeneration lead to many concerns such as oil dilution, performance of the engine and life of DPF system etc.
Technical Paper

Comparative Studies of Different VGT Designs on Performance and Smoke of CRDe Engine

2018-07-09
2018-28-0074
Diesel engines have occupied a significant position in passenger car applications in the present automotive sector. Turbochargers find a very prominent role in diesel engines of all applications in order to achieve desired power and better fuel economy. Gaining higher torque at lower engine speeds with low smoke levels is a very tough task with fixed geometry turbochargers due to availability of lower air mass resulting in higher smoke emissions. Variable geometry turbochargers are capable of providing better torque at lower speeds and reduced smoke emissions on Common Rail Diesel engines. The Variable Geometry Turbocharger types used in this study are straight profile nozzle vanes (sample A) and curved profile nozzle vanes (sample B). The curved profile vanes as seen in sample B results in reduced variation of circumferential pressure distortions.
Technical Paper

Cost and Weight Efficient Differential Housing for Off-Road Vehicles

2016-02-01
2016-28-0133
Differential in Gear Box play vital role in Tractors for assisting it in turning and also to take straight path. Light weight machine always have advantage in terms of fuel economy and performance. Weight optimized rotating part have additional benefits of saving power loss, against stationary dead weight. Differential Housing is such a part, which rotates during the vehicle motion and torque transmission. [1] This paper describes a method by which weight of the Differential Housing is optimized. In this particular body of work, additional constraints of avoiding any change in existing cold forged parts like Bevel Gear & Pinion. This also have additional benefit of enhanced flow of Oil inside Differential Housing for better lubrication of Bevel Gears and Pinion. This resulted in weight saving of Differential Housing and finally fuel economy of Tractor.
Technical Paper

Determination of Principal Variables for Prediction of Fuel Economy using Principal Component Analysis

2019-01-09
2019-26-0359
The complexity of Urban driving conditions and the human behavior introduces undesired variabilities while establishing Fuel economy for a vehicle. These variabilities pose a great challenge while trying to determine that single figure for assessment of vehicle’s fuel efficiency on an urban driving cycle. This becomes even more challenging when two or more vehicles are simultaneously evaluated with respect to a reference vehicle. The attempt to fit a generalized linear model, between Fuel Economy as predicted variable and components of a driving cycle as predictor variables produced oxymoronic and counter-institutive results. This is primarily due to existence of multi-collinearity among the predictor variables. The context of the study is to consider the event of driving on a cycle as a random sampling experiment. The outcome of a driving cycle is summarized into a list of predictor variables or components.
Technical Paper

Development of 2.2 L CRDe Engine Meeting BS4 Emission Norms without the Aid of EGR Cooling

2018-07-09
2018-28-0069
The never-ending concern on the air quality and atmospheric pollution has paved way for more stringent emission legislations. Existing Diesel engine hardware face several problems on meeting the tough emission limits and they require more additional features to comply with the emission standards. The current research work throws light on the air path control approach to meet the Bharat stage 4 emission norms on 2.2 L Sports Utility Vehicle engine operating with EGR cooler and the techniques followed to meet the same emission norms without the application of EGR cooler which was successfully implemented on the vehicles enabling reduction of hardware. Also the migration of 2.2 L engine from 88 kW operating on Compression ratio 18.5 to 103 kW at a lower Compression ratio of 16.5 is a challenging process to achieve Nitrogen oxide emissions reduction at part loads.
Technical Paper

Effect of Gear Shift Indicator Technique Enhancing Improved Fuel Economy on SUV

2018-07-09
2018-28-0054
Improving the fuel economy of the vehicle resulting in energy conservation on long run is a challenging task in the automotive field without compromising the emission margins. Fuel economy improvement by effective driving is the main focus of this paper by the proper utilization of gears which can enable good fuel economy even when the vehicle is driven by different drivers. GSI technique was implemented on Sports utility vehicle operating with 2.2 l engine. Tests were carried with GSI and the effect of fuel consumption and emissions were compared to the regular driving cycle. Optimization of various gear shifting points were analyzed and implemented for better fuel economy keeping the drivability in mind, meeting the BS4 emission norms comfortably. The experiments were carried out in both cold and hot conditions to check the effect of GSI and positive results of fuel economy improvement was yielded.
Technical Paper

Effect of Injector Cone Angle and NTP on Performance and Emissions of BS6 Engine

2019-10-11
2019-28-0108
The combustion phenomenon of diesel engines has got a very major impact on the performance and exhaust emission levels. Several important factors like engine components design, combustion chamber design, Exhaust gas recirculation, exhaust after treatments systems, engine operating parameters etc. decide the quality of combustion. The role of fuel injector is crucial on achieving the desired engine performance and emissions. Efficient combustion depends on the quantity of fuel injected, penetration, atomization and optimum timing of injection. The nozzle through flow, cone angle, no of sprays and nozzle tip penetration are the factors which lead to the selection of perfect injector for a given engine. This paper focusses on the selection of the best fit injector suiting the BS6 application on evaluating the performance and emission characteristics. Injectors used were with varying cone angles and NTP.
Technical Paper

Engine out Particulate Emission Optimization with Multiple Injection Strategy for 3-Cylinder Turbo GDI E6d Engine

2021-09-22
2021-26-0070
With the increase in the number of automobiles on road, there is a very strong emphasis on reducing the air pollution which led to evolution of stringent emission norms. To meet these stringent emission norms, the ideal solution is to optimize the engine hardware and the combustion system to reduce the emission at source thereby reducing the dependency on exhaust after treatment system. Gasoline Direct Injection (GDI) engines are gaining popularity worldwide as they provide a balance between fun to drive and fuel efficiency. Controlling the particle emissions especially Particle Number (PN) is a challenge in GDI engines due to the nature of its combustion system. In this study, experiments were performed on a 1.2Litre 3-cylinder 250bar GDI engine to capture the effect of injection strategies on PN.
Technical Paper

Evaluation and Selection of Turbocharger Meeting BS6 Emission Norms for 1.99l Engine

2019-01-09
2019-26-0058
Migration to BS6 emission norms from BS4 levels involves strenuous efforts involving advanced technology and higher cost. The challenging part is on achieving the stringent emission norms without compromising the engine fuel economy, performance and NVH factors. Selection of hardware and attaining an optimal behaviour is therefore vital. This article focuses on the evaluation of three different configuration of turbochargers for the same engine to meet the BS6 emission norms and performance. The turbocharger samples used measure the same compressor diameter with varying trim ratios. Simulation and testing of turbochargers ensured positive results for confirmation of the system. Parameters like low speed torque, smoke and compressor efficiency were evaluated and analysed for all configurations. The safe limits of surge and choke regions of all the compressors were also studied and verified.
Technical Paper

Factors affecting Regeneration interval of a Diesel Particulate Filter and their influence on BSV emission application

2015-01-14
2015-26-0106
With the implementation of stringent PM emission norms in various countries for diesel vehicles, the legislation demands a PM mass limit as low as 4.5mg/km in the NEDC cycle, starting from Euro5. This makes the usage of Diesel Particulate Filters (DPF) mandatory. The same is going to be mandated for upcoming BSV emission norms in India. Thus it becomes imperative to know the functional aspects of a DPF and their impacts. Basically there are two major functions of a DPF- Soot mass filtration and Soot burning or Regeneration. This paper highlights usage of DPF in Indian context from the perspective of one of the major aspects of DPF regeneration-Regeneration Interval, which is basically governed by vehicle/engine out smoke. Regeneration interval also has direct or indirect influence on life of engine of a vehicle and average fuel economy of a vehicle which will also be touched upon herein.
Journal Article

Fuel Injector Selection in Diesel Engine for BS6 Upgradation

2022-03-29
2022-01-0441
For meeting the stringent BS VI emissions in a 3-cylinder diesel engine the Exhaust after treatment system (EATS) was upgraded from a single brick DOC (diesel oxidation catalyst) to 2 brick DOC+sDPF (Diesel Particulate Filter) configuration. To meet the demands of emission regulation and sDPF requirements, changes were also required in the Fuel injection system. Major changes were done to the fuel injector and fuel pump. This paper primarily discusses the Fuel injector change from 1.1 to 2.2 family with changes in nozzle geometry, Nozzle tip protrusion (NTP), and injector cone angle and the effects on the emission and performance parameters. The various design values of NTP, cone angle, and Sac values are tested in an actual engine to meet the required power, torque and verified to meet NOx, HC, PM values as required by the new BS (Bharat Stage) VI regulation. Other boundary conditions are also checked - BSFC (Brake Specific Fuel Consumption), temperature, etc.
Technical Paper

Holistic Design Approach of Rocker Arm in Aluminum, Sheet Metal & Plastic Materials for Heavy Duty Commercial Application

2023-04-11
2023-01-0440
Diesel engines are known for their excellent low-end torque, better drivability, performance, and better fuel economy. The increase in customer demands pushes to deliver higher power and torque along with fuel economy. This requirement puts a great challenge on the overall weight of the engine. This paper explains the holistic approach followed along with optimizing the rocker arm cover to achieve the weight target without compromising on durability and cost in the commercial segment 2.5-liter Diesel Engine. This paper presents a complete overview of the design and development of Rocker Arm (RA) cover to meet Strength, Durability, NVH and Aesthetic in Commercial Engine where base design is in aluminum which is mounted on cylinder head with a separate breather system. From aluminum the base design of Rocker arm cover is optimized to sheet metal where in there is reduction of 43% in weight and cost saving of 13%.
Technical Paper

Improvement of SCR Thermal Management System and Emissions Reduction through Combustion Optimization

2022-12-23
2022-28-0482
Achieving higher emission norms involves various techniques and it has always been a challenging task on meeting the same. Improving the exhaust temperature is indispensable in order to enhance better conversion efficiency on the after-treatment systems. This paper clearly investigates on the various strategies involved to improve the exhaust temperatures of selective catalytic reduction and post injection strategies to meet the emission norms. On the basis of MIDC operation, key load points were selected and split injections with three pulses were implemented. The variation of both the post injection timing and quantity were performed in this paper in order to evaluate the optimum output. The effect of post injection timing and quantity variation on hydrocarbon emissions, carbon monoxide, diesel oxidation catalyst temperatures was observed on all load points. The above strategy was also evaluated on generating the pressure crank angle data.
Technical Paper

Investigation Of Variable Displacement Oil Pump and Its Influence on Fuel Economy for a 1.5 L, 3 Cylinder Diesel Engine

2023-04-11
2023-01-0465
The Introduction of Corporate Average Fuel Economy (henceforth will be addressed as CAFE) regulations demand suitable technological upgrades to meet the significant increase in targets of vehicle fleet fuel economy. Engine Downsizing and Friction Reduction measures help in getting one step closer to the target. In a Conventional Oil Pump, the pump discharge flow and pressure are a direct function of operating speed. There is no control over lubricant flow which results in increased power and fuel consumption due to its unnecessary pumping characteristics irrespective of the actual engine demand. This paper discusses the introduction of a variable displacement oil pump (henceforth will be addressed as VDOP) that was adapted to a 1.5-liter 3 Cylinder Diesel Engine. This approach helps the system to reduce parasitic losses as the oil flow is regulated based on the mechanical needs of the engine. The flow is regulated with help of a solenoid valve which receives input from the ECU.
Technical Paper

Investigation on Fuel Economy Benefits by Lubrication System Optimization for a High Performance 2.2 L Diesel Engine

2024-04-09
2024-01-2415
Lubrication systems play a major role not only in the durability of modern IC engines but also in performance and emissions. The design of the lubrication system influences the brake thermal efficiency of the engine. Also, efficient lubrication reduces the engine's CO2 emissions significantly. Thus, it is critical for an IC engine to have a well-designed lubrication system that performs efficiently at all engine operating conditions. The conventional lubrication system has a fixed-displacement oil pump that can cater to a particular speed range. However, a fully variable displacement oil pump can cater to a wide range of speeds, thereby enhancing the engine fuel efficiency as the oil flow rates can be controlled precisely based on the engine speed and load conditions. This paper primarily discusses the optimization of a lubrication system with a Variable Displacement Oil Pump (VDOP) and a map-controlled Piston Cooling Jet (PCJ) for a passenger car diesel engine.
Technical Paper

Methodological Approach for Matching Gear and Final Drive Ratio for Better Fuel Economy, Performance and Drivability

2018-04-03
2018-01-0865
Fuel economy, performance and drivability are the three important parameters for evaluating the vehicle performance. Powertrain matching plays a major role in meeting the above targets. Fuel economy is measured based on city, highway and some user defined driving cycles which can be considered as real world usage profiles. Performance and Drivability is evaluated based on the in-gear, thru-gear (acceleration performance) and grade-ability performance. The load collective points of the engine greatly influence the engines performance, fuel economy and emissions, which in-turn depends on the N/V ratio of the vehicle. The optimal selection of gear and final drive ratios plays a key role in the optimization of the Powertrain for a particular vehicle. The current study involves dynamic simulation of the vehicle performance and fuel economy at transient engine test-bed for different gear and final drive ratio combinations using AVL DynoExcat-dynamometer.
X