Refine Your Search

Topic

Author

Search Results

Technical Paper

A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application

2002-10-21
2002-01-2889
Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed.
Technical Paper

An Emission and Performance Comparison of the Natural Gas Cummins Westport Inc. C-Gas Plus Versus Diesel in Heavy-Duty Trucks

2002-10-21
2002-01-2737
Cummins Westport Inc. (CWI) released for production the latest version of its C8.3G natural gas engine, the C Gas Plus, in July 2001. This engine has increased ratings for horsepower and torque, a full-authority engine controller, wide tolerance to natural gas fuel (the minimum methane number is 65), and improved diagnostics capability. The C Gas Plus also meets the California Air Resources Board optional low-NOx (2.0 g/bhp-h) emission standard for automotive and urban buses. Two pre-production C Gas Plus engines were operated in a Viking Freight fleet for 12 months as part of the U.S. Department of Energy's Fuels Utilization Program. In-use exhaust emissions, fuel economy, and fuel cost were collected and compared with similar 1997 Cummins C8.3 diesel tractors. CWI and the West Virginia University developed an ad-hoc test cycle to simulate the Viking Freight fleet duty cycle from in-service data collected with data loggers.
Technical Paper

Analysis of Particulate Matter Sensor Signals

2012-04-16
2012-01-0871
Production PM sensors are now available and are likely to be key components of PM aftertreatment systems designed to meet 2013 OBD requirements. In this paper a highly simplified analysis is used to give insight into the sensor response of resistive-based devices, and to motivate possible diagnostic strategies. The method has been applied to successive sets of FTP data recorded with DPF's of different failure levels, and despite the very approximate nature of the underlying model, the method appears to discriminate reliably between them.
Journal Article

Analytic Solution for the Flow Distribution and Pressure Drop of Ceramic Partially-Plugged Wall Flow Diesel Particulate Filters

2015-04-14
2015-01-1056
A 1-dimensional analytic solution has been developed to evaluate the pressure drop and filtration performance of ceramic wall-flow partial diesel particulate filters (PFs). An axially resolved mathematical model for the static pressure and velocity profiles prevailing inside wall-flow filters, with such unique plugging configurations, is being proposed for the first time. So far, the PF models that have been developed are either iterative/numerical in nature [1], or based on commercial CFD packages [7]. In comparison, an analytic solution approach is a transparent and computationally inexpensive tool that is capable of accurately predicting trends as well as, offering explanations to fundamental performance behavior. The simple mathematical expressions that have been obtained facilitate rational decision-making when designing partial filters, and could also reduce the complexity of OBD logic necessary to control onboard filter performance.
Technical Paper

Axial NO2 Utilization Measurements within a Partial Flow Filter during Passive Regeneration

2017-03-28
2017-01-0988
Measuring axial exhaust species concentration distributions within a wall-flow aftertreatment device provides unique and significant insights regarding the performance of complex devices like the SCR-on-filter. In this particular study, a less complex aftertreatment configuration which includes a DOC followed by two uncoated partial flow filters (PFF) was used to demonstrate the potential and challenges. The PFF design in this study was a particulate filter with alternating open and plugged channels. A SpaciMS [1] instrument was used to measure the axial NO2 profiles within adjacent open and plugged channels of each filter element during an extended passive regeneration event using a full-scale engine and catalyst system. By estimating the mass flow through the open and plugged channels, the axial soot load profile history could be assessed.
Technical Paper

Brake Thermal Efficiency Improvements of a Commercially Based Diesel Engine Modified for Operation on JP 8 Fuel

2011-04-12
2011-01-0120
The majority of commercial diesel engines rely on EGR to meet increasingly stringent emissions standards, creating a potential issue for military applications that use JP-8 as a fuel. EGR components would be susceptible to corrosion from sulfur in JP-8, which can reach levels of 3000 ppm. Starting with a Cummins 2007 ISL 8.9L production engine, modifications to remove EGR and operate on JP-8 fuel are investigated with a key goal of demonstrating 48% brake thermal efficiency (BTE) at an emissions level consistent with 1998 EPA standards. The effects of injector cup flow, improved turbo match, increased compression ratio with revised piston bowl geometry, increased cylinder pressure, and revised intake manifold for improved breathing, are all investigated. Testing focused on a single operating point, full load at 1600 RPM. This engine uses a variable geometry turbo and high pressure common rail fuel system, allowing control over air fuel ratio, rail pressure, and start of injection.
Technical Paper

Developing Diesel Engines to Meet Ultra-low Emission Standards

2005-11-01
2005-01-3628
The modern diesel engine is used around the world to power applications as diverse as passenger cars, heavy-duty trucks, electrical power generators, ships, locomotives, agricultural and industrial equipment. The success of the diesel engine results from its unique combination of fuel economy, durability, reliability and affordability - which drive the lowest total cost of ownership. The diesel engine has been developed to meet the most demanding on-highway emission standards, through the introduction of advanced technologies such as: electronic controls, high pressure fuel injection, and cooled exhaust gas recirculation. The standards to be introduced in the U.S. in 2007 will see the introduction of the Clean Diesel which will achieve near-zero NOx and particulate emissions, while retaining the customer values outlined above.
Technical Paper

Development and Demonstration of a Soot Generator Integrated Bench Reactor

2014-04-01
2014-01-1589
Experimental evaluation of soot trapping and oxidation behaviors of various diesel particulate filters (DPF) has been traditionally hampered by several experimental difficulties, such as the deposition of soot particles with well-characterized and consistent properties, and the tracking of the soot oxidation rate in real time. In the present study, an integrated bench flow-reactor system with a soot generator has been developed and its capabilities were demonstrated with regards to: Consistently and controllably loading soot on DPF samples; Monitoring the exhaust gas composition by FTIR, including quantification of the soot oxidation rate using CO and CO2; Measuring soot oxidation characteristics of various DPF samples. Soot particles were produced from a laminar propane co-flow diffusion flame.
Technical Paper

Development of a Compression Ignition Heavy Duty Pilot-Ignited Natural Gas Fuelled Engine for Low NOx Emissions

2004-10-25
2004-01-2954
A heavy-duty compression ignition engine using EGR and pilot-ignited directly injected natural gas fueling was calibrated for low NOx emissions. A Cummins ISX engine using cooled EGR was fitted with a Westport HPDI™ fuel system and an oxidation catalyst. The base engine hardware was modified to increase EGR rates (up to 40%). The engine, rated at 336 kW (450 hp) and 2236Nm (1650 ft-lbs), was calibrated and tested over steady state and transient test cycles. Steady state testing over the ESC 13-mode test cycle resulted in weighted composite NOx emissions of 0.36 g/bhp-hr and particulate matter emissions of 0.04 g/bhp-hr. Transient testing over the US EPA specified FTP cycle resulted in average NOx emissions of 0.6 g/bhp-hr and PM emissions of 0.03 g/bhp-hr.
Technical Paper

Development of the Methodology for Quantifying the 3D PM Distribution in a Catalyzed Particulate Filter with a Terahertz Wave Scanner

2014-04-01
2014-01-1573
Optimizing the performance of the aftertreatment system used on heavy duty diesel engines requires a thorough understanding of the operational characteristics of the individual components. Within this, understanding the performance of the catalyzed particulate filter (CPF), and the development of an accurate CPF model, requires knowledge of the particulate matter (PM) distribution throughout the substrate. Experimental measurements of the PM distribution provide the detailed interactions of PM loading, passive oxidation, and active regeneration. Recently, a terahertz wave scanner has been developed that can non-destructively measure the three dimensional (3D) PM distribution. To enable quantitative comparisons of the PM distributions collected under different operational conditions, it is beneficial if the results can be discussed in terms of the axial, radial, and angular directions.
Technical Paper

Diesel Engine Cylinder Deactivation for Improved System Performance over Transient Real-World Drive Cycles

2018-04-03
2018-01-0880
Effective control of exhaust emissions from modern diesel engines requires the use of aftertreatment systems. Elevated aftertreatment component temperatures are required for engine-out emissions reductions to acceptable tailpipe limits. Maintaining elevated aftertreatment components temperatures is particularly problematic during prolonged low speed, low load operation of the engine (i.e. idle, creep, stop and go traffic), on account of low engine-outlet temperatures during these operating conditions. Conventional techniques to achieve elevated aftertreatment component temperatures include delayed fuel injections and over-squeezing the turbocharger, both of which result in a significant fuel consumption penalty. Cylinder deactivation (CDA) has been studied as a candidate strategy to maintain favorable aftertreatment temperatures, in a fuel efficient manner, via reduced airflow through the engine.
Journal Article

Diesel Particulate Filter System - Effect of Critical Variables on the Regeneration Strategy Development and Optimization

2008-04-14
2008-01-0329
Regeneration of diesel particulate filters poses major challenges in developing the particulate matter emission control technology to meet EPA 2007/2010 emissions regulations. The problem areas are multifold due to the complexity involved in designing the filter system, developing regeneration strategies and controlling the regeneration process. This paper discusses the need for active regeneration systems. It also addresses several key limitations and trade-offs between the regeneration strategy, chemical kinetics, exhaust gas temperature and the regeneration efficiency. Passive regeneration of diesel particulate filter systems is known to be highly dependent on the engine-out [NOx/PM] ratio as well as exhaust temperature over the duty cycle. Using catalytic oxidation of auxiliary fuel injected into the system, the exhaust gas temperature can be successfully enhanced for filter regeneration.
Journal Article

Durability Study of a High Pressure Common Rail Fuel Injection System Using Lubricity Additive Dosed Gasoline-Like Fuel - Additional Cycle Runtime and Teardown Analysis

2019-04-02
2019-01-0263
This study is a continuation of previous work assessing the robustness of a Cummins XPI common rail injection system operating with gasoline-like fuel. All the hardware from the original study was retained except for the high pressure pump head and check valves which were replaced due to cavitation damage. An additional 400 hour NATO cycle was run on the refurbished fuel system to achieve a total exposure time of 800 hours and detect any other significant failure modes. As in the initial investigation, fuel system parameters including pressures, temperatures and flow rates were logged on a test bench to monitor performance over time. Fuel and lubricant samples were taken every 50 hours to assess fuel consistency, metallic wear, and interaction between fuel and oil. High fidelity driving torque and flow measurements were made to compare overall system performance when operating with both diesel and light distillate fuel.
Journal Article

Effect of Transition Metal Ion Properties on the Catalytic Functions and Sulfation Behavior of Zeolite-Based SCR Catalysts

2017-03-28
2017-01-0939
Copper- and Iron- based metal-zeolite SCR catalysts are widely used in US and European diesel aftertreatment systems to achieve drastic reduction in NOx emission. These catalysts are highly selective to N2 under wide range of operating conditions. Nevertheless, the type of transition metal has a significant impact on the key performance and durability parameters such as NOx conversion, selectivity towards N2O, hydrothermal stability, and sensitivity to fuel sulfur content. In this study, we explained the differences in the performance characteristics of these catalysts based on their relative acidic-basic nature of transition metal present in these catalysts using practically relevant gas species present in diesel exhaust such as NO2, SOx, and NH3. These experiments show that Fe-zeolite has relatively acidic nature as compared to Cu-zeolite that causes NH3 inhibition and hence explains low NOx conversion on Fe-zeolite at low temperature under standard SCR conditions.
Technical Paper

Experimental Determination of the Kinetics of Diesel Soot Oxidation by O2 - Modeling Consequences

2003-03-03
2003-01-0833
Several complementary experimental techniques were applied to investigate kinetics of diesel soot oxidation by O2 in an attempt to provide accurate data for modeling of the Diesel Particulate Filters regeneration process. For two diesel soot samples with measurably different properties, it was shown that the complexity of their overall kinetic behavior was due to an initial period of rapidly changing reactivity. This initial high reactivity was understood not to be related to the SOF, and was quantitatively correlated to the extent of soot pre-oxidation. This initial reactivity can affect the averaged apparent kinetic parameters, for example resulting in the lower apparent activation energy values. After the initial soot pre-oxidation, which consumed ∼10-25% of carbon, the remaining soot was behaving very uniformly, producing linear Arrhenius plots in a remarkably broad range of temperatures (330-610°C) and integral conversions (up to 90%).
Technical Paper

Finite Element Method Based Fatigue Analysis of a Gray Cast Iron Component

2013-04-08
2013-01-1205
Good understanding and accurate prediction of component fatigue strength is crucial in the development of modern engine. In this paper a detail analysis was conducted on an engine component made of gray cast iron with finite element method to evaluate the fatigue strength. This component has notches that cause local stress concentration. It is well known that fatigue behavior of a notch is not uniquely defined by the local maximum stress but depends on other factors determined by notch geometry and local stress distribution. The component fatigue strength was underestimated by only considering the stresses on the notch surface for fatigue life prediction. The critical distance approach was adopted to predict the fatigue behavior of this component. Good agreements are observed between predicted life by the critical distance method and actual field data.
Technical Paper

Gear Whine Noise Due to Deformation- A Case Study

2017-03-28
2017-01-1122
Vehicle noise has reduced over the years due to the customer demand for quieter vehicles. As the background noises such as combustion noise, pumping noise, etc. have reduced, mechanical noises such as gear noise have become prominent and a major cause of customer complaints. Engine timing gear train uses gears for transferring torque to cam and accessory gears. As engines have become quieter by efforts to reduce the combustion noise, as well as, by moving away from mechanical fuel pumps to common rail fuel pumps, the gear train noise has come under increased scrutiny. Gear whine could be a result of multiple factors. Gear profile distortion is one of the factors. Gear torque variation also has a significant effect on gear whine. Operation of the accessory drives such as hydraulic pumps under variable loads and speeds, is one of the major challenges for resolving a gear whine issue in the engine gear train.
Journal Article

Impact of Carbonaceous Compounds Present in Real-World Diesel Exhaust on NOx Conversion over Vanadia-SCR Catalyst

2016-04-05
2016-01-0921
Exposure of hydrocarbons (HCs) and particulate matter (PM) under certain real-world operating conditions leads to carbonaceous deposit formation on V-SCR catalysts and causes reversible degradation of its NOx conversion. In addition, uncontrolled oxidation of such carbonaceous deposits can also cause the exotherm that can irreversibly degrade V-SCR catalyst performance. Therefore carbonaceous deposit mitigation strategies, based on their characterization, are needed to minimize their impact on performance. The nature and the amount of the deposits, formed upon exposure to real-world conditions, were primarily carried out by the controlled oxidation of the deposits to classify these carbonaceous deposits into three major classes of species: i) HCs, ii) coke, and iii) soot. The reversible NOx conversion degradation can be largely correlated to coke, a major constituent of the deposit, and to soot which causes face-plugging that leads to decreased catalyst accessibility.
Technical Paper

Interaction Between Fuel Additive and Oil Contaminant: (II) Its Impact on Fuel Stability and Filter Plugging Mechanism

2003-10-27
2003-01-3140
Sulfur containing species as well as other polar molecules provide lubricity and thermal stability to diesel fuels. During the refining process to produce low and ultra-low sulfur diesel fuels, these components are removed. As a result, fuel additives such as lubricity agents and antioxidant may be added to protect fuel stability and prevent fuel pump wear. Some lubricity additives, such as dimer acids, resulted in fuel filter plugging. The plugging mechanism was related to the capability of aliphatic acids to form agglomeration by interactions with the overbased detergents, delivered into the fuel as oil contaminants. Other sources of acids, derived from thermal degradation, can lead to the same problem. In this study, individual lubricant additives were mixed in the fuel to form single- and dual-component systems. Levels of compatibility and amounts of interaction products were evaluated for individual solutions.
Journal Article

Internal Diesel Injector Deposits: Theory and Investigations into Organic and Inorganic Based Deposits

2013-10-14
2013-01-2670
Over the last two decades, global emission regulations have become more stringent and have required the use of more advanced fuel injection systems. This includes the use of tighter tolerances, more rapid injections and internal components actuated by weaker injection forces. Unfortunately, these design features make the entire system more susceptible to fuel contaminants. Over the last six years, the composition of these contaminants has evolved from hard insoluble debris, such as dust and rocks, to soluble chemical contaminants. Recent research by the diesel engine manufacturers, fuel injection equipment suppliers and the fuel and fuel additive industry has discovered a major source of the soluble chemical contaminant that leads to injector deposits to be derived from cost effective and commonly used additives used to protect against pipeline corrosion.
X